Skip to main content

Organic Carbon in Aquatic Ecosystems: Beyond Energy — Control

  • Chapter
Perspectives in Running Water Ecology

Abstract

For several years now the limnological literature has carried a wide variety of articles dealing with descriptions of the aquatic organic carbon pool. Organic carbon in aquatic ecosystems has been broken down into a series of components ranging from DOM (dissolved organic matter) through to POM (particulate organic matter) with a wide variety of subdescriptors such as FPOM (fine particulate organic matter) and CPOM (coarse particulate organic matter), principally for descriptive convenience. It should be recognized at the outset that in all natural freshwater systems, dissolved organic matter exists as a continuum of sizes from very small molecular weight amino acids and simple sugars to very large molecular weight humic materials. In a similar context, although this material is called ‘organic’, in many instances its inorganic component of sorbed or complexed metal silicates or hydroxides may be considerable. The fact that particulate organic matter also spans a continuum from colloidal substances and bacteria through to fish is perhaps more obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama, T. 1973. Interactions of ferric, and ferrous irons and organic matter in water environment. Geochem. J. 7: 167–177.

    Article  CAS  Google Scholar 

  • Beck, K.C., Reuter, J.H. and Perdue, E.M. 1974. Organic and inorganic geochemistry of some coastal plain rivers of the southeastern United States. Geochim. cosmochime acta. 38: 341–364.

    Article  CAS  Google Scholar 

  • Black, A.P. and Willems, G.D. 1961. Electrophoretic studies of coagulation for removal of organic colour. J. Amer. Water Works Assoc. 53: 589–604.

    CAS  Google Scholar 

  • Bondarenko, G.P. 1968. An experimental study on the solubility of galena in the presence of fulvic acids. (Trans. from) Geokhimiya. 5: 631–636 (from Jackson et al., 1978).

    Google Scholar 

  • Bordovskiy, O.K. 1965. Accumulation and transformation of organic substances in marine sediments. Marine Geol. 3: 1–14.

    Google Scholar 

  • Boulegue, J. and Michard, G. 1974. Interactions between sulphur, polysulphide system and organic material in reducing media. C.R. Acad. Sci., Ser. D, 279(1): 13–15.

    CAS  Google Scholar 

  • Bourg, A.C.M. 1979. Effect of ligands at the solid-solution interface upon the speciation of heavy metals in aquatic systems. In: Proc. Int. Conf. on Man and Concentration of Heavy Metals in the Environment. Long, Sept., 1979. pp. 446–449.

    Google Scholar 

  • Berger, I.A. (ed.). 1963. Organic Geochemistry. Pergamon Press, New York, N.Y.

    Google Scholar 

  • Emerson, S. and Hesslein, R. 1973. Distribution and uptake of Radium-226 in a small lake. J. Fish. Res. Bd. Canada 30: 1485–1490.

    Article  CAS  Google Scholar 

  • Ferguson, J.F. and Gavis, J. 1972. A review of the arsenic cycle in natural waters. Water Research 6: 1259–1274.

    Article  CAS  Google Scholar 

  • Fisher, E.I., Fisher, V.L. and Miller, A.D. 1974. Nature of interaction of natural organic acids with gold. Soc. Geol. 7: 142–146.

    Google Scholar 

  • Flaig, W., Küster, E., Haider, K., Bautelspacher, G., Filip, Z. and Martin, J.P. 1971. Influence of clay minerals on the formation of humic substances by some soil fungi. Soviet Soil Sci. 4: 322–330.

    Google Scholar 

  • Fogg, G.E. 1966. Algal Cultures and Phytoplankton Ecology. Univ. of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Gjessing, E.T. 1976. Physical and Chemical Characteristics of Aquatic Humus. Ann Arbor Sci. Publ. Inc., Ann Arbor, Michigan.

    Google Scholar 

  • Hakanson, L. 1980. An ecologist risk index for aquatic pollution control: a sedimentological approach. Water Res. 14: 975–1001.

    Article  Google Scholar 

  • Hardstedt-Romeo, M. and Gnassia-Barelli, M. 1980. Effect of complexation by natural phytoplankton exudates on the accumulation of cadmium and copper by the Haptophyceae Criaosphaera elongota. Marine Biology 59: 79–84.

    Article  Google Scholar 

  • Harrar, N.J. 1929. Solvent effects of certain organic acids upon oxides of iron. Econ. Geol. 24: 50–61.

    Article  CAS  Google Scholar 

  • Haug, A., Larsen, B. and Baardseth, E. 1969. Comparison of the constitution of alginates from different sources. In: Margslef, R. (ed.), Proceedings of the Sixth International Seaweed Symposium, Madrid, Subsecretaria de 1a Marina Mercante.

    Google Scholar 

  • Hesslein, R.H., Broecker, W.S. and Schindler, D.W. 1980. Fates of metal radiotracers added to a whole lake: sediment water interactions. Can. J. Fish. Aquat. Sci. 37: 378–386.

    Article  CAS  Google Scholar 

  • Jackson, K.S., Jonasson, I.R. and Skippen, G.B. 1978. The nature of metals — sediment — water interactions in freshwater bodies, with emphasis on the role of organic matter. Earth-Science Reviews 14: 97–146.

    Article  CAS  Google Scholar 

  • Jackson, T.A. and Hecky, R. 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. Aquat. Sci. 37: 2300–2317.

    Article  Google Scholar 

  • Jackson, T.A., Kipphut, G., Hesslein, R. and Schindler, D.W. 1980. Experimental study of trace metal chemistry in soft water lakes at different pH levels. Can. J. Fish. Aquat. Sci. 37: 387–402.

    Article  CAS  Google Scholar 

  • Jackson, T.A. and Schindler, D.W. 1975. The biogeochemisty of phosphorous in an experimental lake environment: evidence for the formation of humic-metal-phosphate complexes. Proa. Int. Assoc. Theor. Appl. Limnol. 19: 211–221.

    Google Scholar 

  • Janecek, J. and Chalupa, J. 1969. Biological effects of peat water humic acids on warm-blooded organisms. Arch. Hydrobiol. 65: 515–522.

    Google Scholar 

  • Jernelov, A. and Lann, H. 1973. Studies in Sweden on feasibility of some methods for restoration of mercury-contaminated bodies on water. Environ. Sci. Teohnol. 7: 712–718.

    Article  CAS  Google Scholar 

  • Jonasson, I.R. and Timperley, M.H. 1973. Field observations on the transport of heavy metals in sediments (A.J. de Groot and E. Allersman). Discussion: In: P.A. Krenkel (ed.) Proceeding Symposium Heavy Metals in Aquatic Enviconment (Suppl. Progr. Water Technol., Publ. 1975). Pergamon, Oxford, pp. 97–101.

    Google Scholar 

  • Kaushik, N.K. and Hynes, H.B.N. 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Khan, S.U. 1973. Equilibrium and kinetic studies on the adsorption of 2,4-D and picloram on humic acid. Can. J. Soil Sci. 53: 429–434.

    Article  CAS  Google Scholar 

  • Klyachko, V.A. 1964. Oxidation method for the removal of colour and iron from water. Scientific papers from the Institute of Chemical Technology, Prague. Technology of Water 8: 195–201.

    Google Scholar 

  • Kuznetzov, S.I. 1975. Role of microorganisms in the formation of lake bottom deposits and their diogenesis. Soil Sci. 119: 81–88.

    Article  Google Scholar 

  • Lean, D.R.S. 1973. Movements of phosphorous between its biologically important forms in lake water. J. Fish. Res. Board Can. 30: 1525–1536.

    Article  CAS  Google Scholar 

  • Leppard, G.G., Massalski, A. and Lean, D.R.S. 1977. Electron opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations. Protoplasma 92: 289–309.

    Article  PubMed  CAS  Google Scholar 

  • Lovelock, J.E. 1979. Gaia — A New Look at Life on Earth. Oxford Univ. Press, Toronto.

    Google Scholar 

  • Manskaya, S.M. and Drozdova, T.V. 1968. Geochemistry of Organic Substances. Pergamon Press, Oxford.

    Google Scholar 

  • Martin, J.P. and Haider, K. 1971. Microbial activity in relation to soil humus formation. Soil Sci. 111: 54–63.

    Article  CAS  Google Scholar 

  • Mathur, S.P. and Paul, E.A. 1967a. Microbial Utilization of Soil Humic Acids. Can. J. Microbiol. 13: 581–586.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, S.P. and Paul, E.A. 1967b. Partial Characterization of Soil Humic Acids Through Biodegradation. Can. J. Microbiol. 13: 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Neunylov, B.A. and Khaukina, N.V. 1968. Study of the rate of decomposition and conversion processes of organic matter tagged with 14C in the soil. Soviet Soil Sci. 2: 234–239.

    Google Scholar 

  • Nissenbaum, A. and Kaplan, I.R. 1972. Chemical and Isotopic Evidence for the in situ origin of Marine Humic Substances. Limnol. Oceanogr. 17: 570–582.

    Article  CAS  Google Scholar 

  • Odum, W.E. and Drifmoyer, J.E. 1978. Sorption of pollutants by plant detritus: Review. Environmental Health Perspectives 27: 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Pauli, F.W. 1975. Heavy metal humates and their behaviour against hydrogen sulphide. Soil Sci. 119: 98–105.

    Article  CAS  Google Scholar 

  • Poldoski, J.E. 1979. Cadmium bioaccumulation assay: their relationship to various ionic equilibria in Lake Superior water. Environ. Sci. Teohnol. 13: 701–706.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Kushner, D.J. 1975a. Heavy metal binding components of river water. J. Fish. Res. Bd. Canada 32: 1755–1766.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Kusher, D.J. 1975b. Heavy-metal binding sites in river water. Nature (London) 256: 399–401.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Leppard, G.G. 1977. Fibrillar pectin and contact cation exchange at the root surface. J. Theor. Biol. 66: 527–540.

    Article  PubMed  CAS  Google Scholar 

  • Rashid, M.A. and Leonard, J.D. 1973. Modifications of the solubility and precipitation behaviour of various metals as a result of their interactions with sedimentary humic acid. Chem. Geol. 11: 89–97.

    Article  CAS  Google Scholar 

  • Rorem, E.S. 1955. Uptake of rubidium and phosphate ions by polysaccharide-producing bacteria. J. Bacteriol. 70: 691–701.

    PubMed  CAS  Google Scholar 

  • Sakamoto, M. 1971. Chemical factors involved in the control of phytoplankton production in the experimental lakes area, northwestern Ontario. J. Fish. Res. Bd. Canada 28: 203–213.

    Article  CAS  Google Scholar 

  • Schenek, P.A. and Havenaar, I. (eds.). 1968. Advances in Organic Geochemistry. Pergamon, Oxford.

    Google Scholar 

  • Schindler, D.W., Hesslein, R.W., Wagemann, R. and Broeckner, W.S. 1980. Effects of acidification on mobilization of heavy metals and radionuclides from the sediments of a freshwater lake. Can. J. Fish. Aquat. Sci. 37: 373–377.

    Article  CAS  Google Scholar 

  • Schnitzer, M. 1971. Metal-Organic Matter Interactions in Soils and Waters. In: Organic Compounds in Aquatic Environments. S.D. Faust and J.V. Hunter, (eds.) Marcel Dekker, Inc., New York.

    Google Scholar 

  • Seki, H., Shortreed, K.S. and Steckner, J.G. 1980. Turnover rate of dissolved organic materials in glacially-oligotrophic and dystrophic lakes in British Columbia, Canada. Arch. Hydrobiol. 90: 210–216.

    CAS  Google Scholar 

  • Singer, A. and Navrot, J. 1976. Extraction of metals from basalt by humic acids. Nature (Land.) 262: 479–481.

    Article  CAS  Google Scholar 

  • Stumm, W. and Morgan, J.J. 1970. Aquatic Chemistry. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  • Sundman, V. 1965. Transformation of lignin-related compounds into humic acids. Acta Polytech. Scand., Helsinki. Chapter 40.

    Google Scholar 

  • Timperley, M.H. and Allan, R.J. 1974. The formation and detection of metal dispersion haloes in organic lake sediments. J. Geochem. Explor. 3: 167–190.

    Article  CAS  Google Scholar 

  • Wood, J.M. 1974. Biological cycles for toxic elements in the environment. Science 183: 1049–1952.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Lush, D.L. (1981). Organic Carbon in Aquatic Ecosystems: Beyond Energy — Control. In: Lock, M.A., Williams, D.D. (eds) Perspectives in Running Water Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1122-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1122-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1124-9

  • Online ISBN: 978-1-4684-1122-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics