Skip to main content

Visualization of Cellulases and Cellulose Degradation

  • Chapter
Cellulose and Other Natural Polymer Systems

Abstract

Cellulases have biological and economic significance in their destructive roles in plant pathogenesis (W. Brown, 1965; Albersheim, 1969) and wood decay (Scheffer and Cowling, 1966; Liese, 1970); in their possible beneficial use in converting waste cellulose into glucose, which may then be converted into the valuable chemical ethanol (Wilkie, 1975); and in their role in cell-wall loosening in higher plants to allow cell elongation and growth (Ridge and Osborne, 1969). The cellulase enzyme system of Trichoderma reesei QM9414 was chosen for this study for two reasons. First, Trichoderma is famous for its ability to degrade highly crystalline cellulose and is one of the most efficient of the cellulolytic fungi (Mandels, 1975). Second, because Trichoderma is such a good source of cellulase, its enzyme system has been studied more extensively than that of any other cellulolytic organism. Consequently, the biochemical characterizations and activities of the various Trichoderma cellulase enzymes are well known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim, P., 1969, Biochemistry of the cell wall in relation to infective processes. Annu. Rev. Phytopathol 7: 171.

    Article  CAS  Google Scholar 

  • Benziman, M., Haigler, C. H., Brown, R. M. Jr., White, A. R., Cooper, K. M., 1980, Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc. Natl. Acad. Sci. U.S.A. 77: 6678.

    Article  CAS  Google Scholar 

  • Blackwell, J., Kolpak, F. J., 1976, Cellulose microfibrils as disordered arrays of elementary fibrils. Appl. Polym. Symp. 28: 751.

    CAS  Google Scholar 

  • Brown, R. M. Jr., Willison, J. H. M., Richardson, C. L., 1976, Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73: 4565.

    Article  CAS  Google Scholar 

  • Brown, W., 1965, Toxins and cell wall dissolving enzymes in relation to plant disease. Annu. Rev. Phytopathol. 3: 1.

    Article  Google Scholar 

  • Colvin, J. R, 1972, The structure and biosynthesis of cellulose. CRC Crit. Rev. Macromol. Sci. 1: 47.

    CAS  Google Scholar 

  • Emert, G. H., Gum, E. K. Jr., Lang, J. A., Lin, T. H., Brown, R. D. Jr., 1974, Cellulases, in: Food Related Enzymes (J. Whitaker, ed.), pp. 79–100, Advances in Chemistry Series No. 136, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Eriksson, K.-E., Rzedowski, W., 1969, Extracellular enzyme system utilized by the fungus Chrysosporium lignorum for the breakdown of cellulose. I. Studies on the enzyme production. Arch. Biochem. Biophys. 129: 683.

    Article  CAS  Google Scholar 

  • Fan, L. T., Lee, H. Y., Beardmore, D. H., 1980, Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22: 177.

    Article  CAS  Google Scholar 

  • Gardner, K. H., Blackwell, J., 1974, The structure of native cellulose. Biopolymers 13: 1975.

    Google Scholar 

  • Grassmann, W., Zechmeister, L., Toth, G., Stadler, R., 1933, Uber den enzymatischen Abban der Cellulose und ihrer Spaltproduckte. Justus Liebigs Ann. Chem. 503: 167.

    Article  CAS  Google Scholar 

  • Green, N. M., Valentine, R. C., Wrigley, N. C., Ahmad, F., Jacobson, B., Wood, H. G., 1972, Transcarbamylase. XI. Electron microscopy and subunit structure. J. Biol. Chem. 247: 6284.

    CAS  Google Scholar 

  • Gregory, D. W., Pirie, B. J. S., 1973, Wetting agents for biological electron microscopy. I. General considerations and negative staining. J. Microsc. (Oxford) 99: 251.

    Article  CAS  Google Scholar 

  • Gritzali, M., Brown, R. D. Jr., 1979, The cellulase system of Trichoderma: Relationships between purified extracellular enzymes from induced or cellulose-grown cells, in: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis (R. D. Brown, Jr., L. Jurasek, eds.), pp. 237–260, Advances in Chemistry Series, No. 181, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Gum, E. K. Jr., Brown, R. D. Jr., 1976, Structural characterization of a glycoprotein cellulase, l,4-β-D-glucan cellobiohydrolase C from Trichoderma viride. Biochim. Biophys. Acta 446: 371.

    CAS  Google Scholar 

  • Gum, E. K. Jr., Brown, R. D. Jr., 1977a, Comparison of four purified extracellular 1,4-β-d- glucan cellobiohydrolase enzymes from Trichoderma viride. Biochim. Biophys. Acta 492: 225.

    CAS  Google Scholar 

  • Gum, E. K. Jr., Brown, R. D. Jr., 1977b, Two alternative HPLC separation methods for reduced and normal cellooligosaccharides. Anal. Biochem. 82: 372.

    Article  CAS  Google Scholar 

  • Haigler, C. H., Brown, R. M. Jr., Benziman, M., 1980, Calcofluor White ST alters the in vivo assembly of cellulose microfibrils. Science 210: 903.

    Article  CAS  Google Scholar 

  • Halliwell, G., Griffin, M., 1973, The nature and mode of action of the cellulolytic component C of Trichoderma koningii on native cellulose. Biochem. J. 135: 587.

    CAS  Google Scholar 

  • Hestrin, S., Schramm, M., 1954, Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345.

    CAS  Google Scholar 

  • Home, R. W., 1978, Special specimen preparation methods for image processing in transmission electron microscopy: A review. J. Microsc. 113: 241.

    Article  Google Scholar 

  • Iwasaki, T., Hayashi, K., Funatsu, M., 1964, Purification and characterization of two types of cellulase from Trichoderma koningii. J. Biochem. (Tokyo) 55: 209.

    CAS  Google Scholar 

  • Josephs, R., 1971, Electron microscopic studies on glutamic dehydrogenase: Subunit structure of individual molecules and linear associates. J. Mol. Biol. 55: 147.

    Article  CAS  Google Scholar 

  • Keegstra, K., Talmadge. K. W., Bauer, W. D., Albersheim. P., 1973, The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51: 188.

    Article  CAS  Google Scholar 

  • Lake, J. A., 1979, Practical aspects of immune electron microscopy. Methods Enzymol. 61: 250.

    Article  CAS  Google Scholar 

  • Li, L. H., Flora, R. M., King, K. W., 1965, Individual roles of cellulase components derived from Trichoderma viride. Arch. Biochem. Biophys. 111: 439.

    Article  CAS  Google Scholar 

  • Liese, W., 1970, Ultrastructural aspects of woody tissue degradation. Annu. Rev. Phytopathol. 8: 231.

    Article  Google Scholar 

  • Mandels, M., 1975, Microbial sources of cellulase. Biotechnol. Bioeng. Symp. 5: 81.

    CAS  Google Scholar 

  • Massover, W. H., 1978, The ultrastructure of ferritin macromolecules. III. Mineralized iron in ferritin is attached to the protein shell. J. Mol. Biol 123: 721.

    Article  CAS  Google Scholar 

  • Montezinos, D., Brown, R. M. Jr., 1976, Surface architecture of the plant cell: Biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis. J. Supramol. Struct. 5: 277 (229).

    Google Scholar 

  • Ohtsuki, M., Isaacson, M. S., Crewe, A. V., 1979, Dark field imaging of biological macromolecules with the scanning transmission electron microscope. Proc. Natl. Acad. Sci. U.S.A. 76: 1228.

    Article  CAS  Google Scholar 

  • Ottensmeyer, F. P., Whiting, R. F., Schmidt, E. E., Clemens, R. S., 1975, Electron microtephroscopy of proteins, A close look at the ashes of myokinase and protamine. J. Ultrastruct. Res. 52: 193.

    Article  CAS  Google Scholar 

  • Ottensmeyer, F. Prew J. W., Bazett-Jones, D. P., Chau, A. S. K., Hewitt, J., 1977, Signal to noise enhancement in dark field electron micrographs of vasopressin: Filtering of arrays of images in reciprocal space. J. Microsc. (Oxford) 109: 259.

    Article  CAS  Google Scholar 

  • Pease, D. C., 1975, Micronets for electron microscopy. Micron 6: 85.

    Google Scholar 

  • Pringsheim, H., 1912, Uber den fermentativen Abban der Zellulose. Z. Physiol. Chem. 78: 266.

    Article  CAS  Google Scholar 

  • Reese, E. T., 1956, A microbiological process report: Enzymatic hydrolysis of cellulose, Appl. Microbiol. 4: 39.

    CAS  Google Scholar 

  • Reese, E. T., 1975a, Polysaccharases and the hydrolysis of insoluble substrates, in: Biological Transformation of Wood ( W. Liese, ed.), pp. 165–181, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Reese, E. T., 1975b, Summary statement on the enzyme system. Biotechnol. Bioeng. Symp. 5: 77.

    CAS  Google Scholar 

  • Reese, E. T., Levinson, H. S., 1952, A comparative study of the breakdown of cellulose by microorganisms. Physiol. Plant. 5: 345.

    Article  CAS  Google Scholar 

  • Reese, E. T., Siu, R. G., Levinson, H. S., 1950, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485.

    CAS  Google Scholar 

  • Ridge, I., Osborne, D. J., 1969, Cell growth and cellulases: Regulation by ethylene and indole-3- acetic acid in shoots oiPisum sativum. Nature (London) 223: 318.

    Article  CAS  Google Scholar 

  • Romanovicz, D. K., Brown, R. M. Jr., 1976, Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. II. Scale composition and supramolecular structure. Appl. Polym. Symp. 28: 587.

    CAS  Google Scholar 

  • Rowland, S. P., 1975, Selected aspects of the structure and accessibility of cellulose as they relate to hydrolysis. Biotechnol. Bioeng. Symp. 5: 183.

    CAS  Google Scholar 

  • Rowland, S. P., Roberts, E. J., 1972, The nature of accessible surfaces in the microstructure of cotton cellulose. J. Polym. Sci. Polym. Chem. Ed. 10: 2447.

    Article  CAS  Google Scholar 

  • Scheffer, T. C., Cowling, E. B., 1966, Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4: 147.

    Article  CAS  Google Scholar 

  • Seilliere, G., 1905, Sur la digestion de cellulose. C. R. Seances Soc. Biol. Ses Fil. 58: 409.

    Google Scholar 

  • Selby, K., Maitland, C. C., 1967, The cellulase of Trichoderma viride: Separation of the components involved in the solubilization of cotton. Biochem. J. 104: 716.

    CAS  Google Scholar 

  • Shoemaker, S. P., Brown, R. D. Jr., 1978a, Enzymic activities of endo-1,4-β-d-glucanases purified from Trichoderma viride. Biochim. Biophys. Acta 523: 133.

    CAS  Google Scholar 

  • Shoemaker, S. P., Brown, R. D. Jr., 1978b, Characterization of en do- 1,4-O-D-glucanases purified from Trichoderma viride. Biochim. Biophys. Acta 523: 147.

    CAS  Google Scholar 

  • Ward, H. M., 1888, A lily-disease. Ann. Bot. (London) 2: 319.

    Google Scholar 

  • Ward, H. M., 1898, Penicillium as a wood-destroying fungus. Ann. Bot. (London) 12: 565.

    Google Scholar 

  • White, A. R., Brown, R. M. Jr., 1981, Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Natl. Acad. Sci. U.S.A. 78: 1047.

    Article  CAS  Google Scholar 

  • Whiting, R. F., Ottensmeyer, F. P., 1972, Heavy atoms in model compounds and nucleic acids imaged by darkfield transmission electron microscopy. J. Mol. Biol. 67: 173.

    Article  CAS  Google Scholar 

  • Wilkie, C. R. (ed.), 1975, Cellulose as a Chemical and Energy Source, John Wiley, New York.

    Google Scholar 

  • Willison, J. H. M., Brown, R. M. Jr., 1978, Cell wall structure and deposition in Glaucocystis. J. Cell Biol. 77: 103.

    Article  CAS  Google Scholar 

  • Wood, T. M., 1968, Cellulolytic enzyme system of Trichoderma koningii: Separation of components attacking native cotton. Biochem. J. 109: 217.

    CAS  Google Scholar 

  • Wood, T. M., McCrae, S. I., 1972, The purification and properties of the C, component of Trichoderma koningii cellulase. Biochem. J. 128: 1183.

    CAS  Google Scholar 

  • Wood, T. M., McCrae, S. I., 1978, Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting along and in synergism with the cellobiohydrolase. Biochem. J. 171: 61.

    CAS  Google Scholar 

  • Zaar, K., 1979, Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram negative bacterium A. xylinum. J. Cell Biol. 80: 773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

White, A.R. (1982). Visualization of Cellulases and Cellulose Degradation. In: Brown, R.M. (eds) Cellulose and Other Natural Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1116-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1116-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1118-8

  • Online ISBN: 978-1-4684-1116-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics