Skip to main content

β-Glucanases in Higher Plants: Localization, Potential Functions, and Regulation

  • Chapter
Cellulose and Other Natural Polymer Systems

Abstract

Polysaccharides with d-glucopyranose units joined in glucosidic linkages are the most abundant organic substances on earth. The major β-linked glucan polysaccharides are β1,4-glucan (cellulose) and β1,3-glucans (e.g., curdlan, callose). Other β-glucans have a backbone of β-1,3-linked glucose units associated with variable and low proportions of internal β1,4- or β1,6-linkages (e.g., pachyman, laminarin) or associated in a regular pattern with relatively high proportions of β1,4-linkages (mixed-linkage glucans).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F. B., 1969, Abscission: Role of cellulases. Plant Physiol. 44: 447.

    Article  CAS  Google Scholar 

  • Abeles, F. B., Forrence, L. E., 1970, Temporal and hormonal control of β-3-glucanase in Phaseolus vulgaris. Plant Physiol. 45: 395.

    Article  CAS  Google Scholar 

  • Abeles, F. B., Leather, G. R., 1971, Abscission: Control of cellulase secretion by ethylene. Planta 97: 87.

    Article  CAS  Google Scholar 

  • Abeles, F. B., Bosshart, R. P., Forrence, L. E., Habig, W. H., 1970, Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol. 47: 129.

    Article  Google Scholar 

  • Abeles, F. B., Leather, G. R., Forrence, L. E., Cracker, L. E., 1971, Abscission: Regulation of senescence, protein synthesis and enzyme secretion by ethyleneHortic. Sci. 6:371.

    CAS  Google Scholar 

  • Albersheim, P., 1976, The primary cell wall, in: Plant Biochemistry ( J. Bonner, J. E. Varner, eds.), pp. 226–274, Academic Press, New York.

    Google Scholar 

  • Albersheim, P., Anderson-Prouty, A. J., 1975, Carbohydrates, proteins, cell surfaces and the biochemistry of pathogenesis. Annu. Rev. Plant Physiol. 26: 31.

    Article  CAS  Google Scholar 

  • Ali, S. S., Saxena, S. B., 1978, Production of cellulase by Botryodiplodia theobromae. Acta. Bot. Indica (Suppl) 6: 132.

    Google Scholar 

  • Baker, D. B., Ray, P. M., 1965a, Direct and indirect effects of auxin on cell-wall synthesis in oat coleoptile tissue. Plant Physiol. 40: 345.

    Article  CAS  Google Scholar 

  • Baker, D. B., Ray, P. M., 1965b, The effect of auxin on synthesis of oat coleoptile cell-wall constituents. Plant Physiol. 40: 353.

    Article  Google Scholar 

  • Bal, A. K., 1972, Localization of cellulase in plant cells, Proceedings of the 4th International Congress on Histochemistry and Cytochemistry, (T. Takevchi, K. Ogawa, S. Fujita, eds. ), pp. 301–302.

    Google Scholar 

  • Bal, A. K., 1973, Cellulase in: Electron Microscopy of Enzymes, Vol. 3 (M. A. Hyat, ed.), pp. 68–76,

    Google Scholar 

  • Van Nostrand, New York. Bal, A. K., Payne, J. F., 1972, Endoplasmic reticulum and cell wall breakdown in quiescent root meristem of Allium cepa L. Z. Pflanzenphysiol. 66S: 265.

    Google Scholar 

  • Bal, A. K., Verma, D. P. S., Byrne, H., Maclachlan, G. A., 1976, Subcellular localization of cellulases in auxin-treated pea. J. Cell Biol. 69: 97.

    Article  CAS  Google Scholar 

  • Bal, A. K., Shantharam, S., Verma, D. P. S., 1980, Changes in the outer cell wall of Rhizobium during development of root nodule symbiosis in soybean. Can. J. Microbiol. 26: 1096.

    Article  CAS  Google Scholar 

  • Ballance, G. M., Manners, D. J., 1978, Partial purification and properties of an endo-1,3-)3-d-glucanase from germinated rye. Phytochemistry 17: 1539.

    Article  CAS  Google Scholar 

  • Barmore, C. R., Rouse, A. H., 1976, Pectin esterase activity in controlled atmosphere stored avocado. J. Am. Soc. Hortic. Sci. 101: 294.

    CAS  Google Scholar 

  • Barras, D. R., Stone, B. A., 1969a, β-Glucan hydrolase from Euglena gracilis. II. Purification and properties of β-1,3-glucan exohydrolase. Biochim. Biophys. Acta 191: 329.

    Google Scholar 

  • Barras, D. R., Stone, B. A., 1969b, Carbohydrate composition and metabolism in Euglena, in: The Biology of Euglena, Vol. II ( D. E. Buetow, ed.), pp. 149–191, Academic Press, New York and London.

    Google Scholar 

  • Bartnicki-Garcia, S., 1973, Fundamental aspects of hyphal differentiation, in: Microbial Differentiation ( J. M. Ashworth, J. E. Smith, eds.), pp. 245–267, Cambridge University Press, Oxford.

    Google Scholar 

  • Bassett, B., Goodman, R. N., Novacky, A., 1977, Ultrastructure of soybean nodules. I. Release of Rhizobia from the infection thread. Can. J. Microbiol. 23: 573.

    Article  CAS  Google Scholar 

  • Bateman, D. F., Bashman, H. G., 1976, Degradation of plant cell walls and membranes by microbial enzymes, in: Physiological Plant Pathology, Encyclopedia of Plant Physiology New Series, Vol. 4 ( R. Heitfuss, P. H. Williams, eds.), pp. 316–355, Springer-Verlag, Berlin.

    Google Scholar 

  • De Miller, J. N., Diane, O., Tegtmeier, D. O., Pappelis, A. J., 1969, Constitutive cellulolytic enzymes of Diplodiazeae, in: Cellulases and Their Applications (R. F. Gould, ed.), pp. 188–196, Advances in Chemistry Series, No. 95, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Ben-Arie, R., Kislev, N., Frenkel, C., 1979, Ultra structural changes in the cell-walls of ripening apple and pear fruit. Plant Physiol. 64: 197.

    Article  CAS  Google Scholar 

  • Berghem, L. E. R., Petterson, L. G., 1974, The mechanism of enzymatic cellulose degradation: Isolation and some properties of a β-glucosidase from Trichoderma viridae. Eur. J. Biochem. 46: 295.

    Article  CAS  Google Scholar 

  • Bonn, B. D., 1970, Hormonal specificity for regulation of cellulase activity and growth in pea epicotyls, M.Sc. thesis., Biology Department, McGill University, Montreal, Canada.

    Google Scholar 

  • Brown, R. D., Jurasek, L. (eds.), 1979, Hydrolysis of Cellulose: Mechanism of Enzymatic and Acid Catalysis, Advances in Chemistry Series, No. 181, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Brown, R. M., Jr., Montezinos, D., 1976, Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma-membrane. Proc. Natl. Acad. Sci. U.S.A. 73: 143.

    Article  CAS  Google Scholar 

  • Brown, R. M., Willison, J. H. M., 1977, Golgi apparatus and plasma membrane involvement in secretion and cell surface deposition, with special emphasis on cellulose, in: International Cell Biology 1976–1977 ( B. R. Brinkley, K. R. Porter, eds.), pp. 267–283, The Rockefeller University Press, New York.

    Google Scholar 

  • Brown, W. V., Johnson, C., Sr., 1962, The fine structure of the grass guard cells. Am. J. Bot. 49: 110.

    Article  Google Scholar 

  • Byrne, H., 1974, Auxin-regulated cellulases from Pisum sativum: Purification, characterization and development, Ph.D. thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Byrne, H., Christou, N. V., Verma, D. P. S., Maclachlan, G. A., 1975, Purification and characterization of two cellulases from auxin treated pea epicotyls. J. Biol. Chem. 250: 1012.

    CAS  Google Scholar 

  • Callaham, D. A., 1979, A structural basis for infection of root hairs of Trifolium ripens by Rhizobiurn trifolii, M.Sc. thesis, University of Massachusetts, Amherst.

    Google Scholar 

  • Ciechanover, A., Heller, H., Elias, S., Haas, A. L., Hershko, A., 1980. ATP dependent conjugation of reticulocyte protein with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. U.S.A. 77: 1365.

    Article  CAS  Google Scholar 

  • Clarke, A. E., Stone, B. A., 1962, β-1,3-Glucanase hydrolysis from the grape win e(Vitisvinifera) and other plants. Phytochemistry 1: 175.

    Google Scholar 

  • Cleland, R., 1971, Cell-wall extension. Annu. Rev. Plant Physiol. 22: 197.

    Article  CAS  Google Scholar 

  • Cooper, R. M., Rankin, B., Wood, R. K. S., 1978, Cell-wall-degrading enzymes of vascular wilt fungi. II. Properties and modes of action of polysaccharidases of Verticillium alboatrum and Fusarium oxysporum fsp lycopersici. Physiol. Plant Pathol. 13: 101.

    Article  CAS  Google Scholar 

  • Cresti, M., Van Went, J. L., 1976, Callose deposition and plug formation in petunia pollen tubes in situ. Planta 133: 35.

    Article  Google Scholar 

  • Currier, H. P., 1957, Callose substances in plant cells. Am. J. Bot. 44: 678.

    Article  Google Scholar 

  • Danylyak, M. I., Mel’nychuk, H. H., Babenkoye, I., 1977, Comparative study of C-2 cellulase and C-x endo glucanase activités in representatives of white and brown rot. Ukr. Bot. Zh. 34: 348.

    Google Scholar 

  • Dart, P. J., 1974, The infection process, in: The Biology of Nitrogen Fixation ( A. Quispel, ed.), pp. 381–429, North-Holland, Amsterdam.

    Google Scholar 

  • Dart, P. J., 1977, Infection and development of leguminous nodules, in: A Treatise on Dinitrogen Fixation, Section III, Biology ( R. W. F. Hardy, W. S. Silver, eds.), pp. 367–472, John Wiley, New York.

    Google Scholar 

  • Datko, A. H., Maclachlan, G. A., 1968, Indoleacetic acid and the synthesis of glucanases and pectic enzymes. Plant Physiol. 43: 735.

    Article  CAS  Google Scholar 

  • Datko, A. H., Maclachlan, G. A., 1970, Patterns of development of glycosidase activity in pea epicotyls. Can. J. Bot. 48: 1165.

    Google Scholar 

  • Davies, E., Maclachlan, G. A., 1968, Effects of indoleacetic acid on intra cellular distribution of β-glucanase activities in the pea epicotyl. Arch. Biochem. Biophys. 128: 595.

    Article  CAS  Google Scholar 

  • Davies, E., Maclachlan, G. A., 1969, Generation of cellulase activity during protein synthesis by pea microsomes in vitro. Arch. Biochem. Biophys. 129: 581.

    Article  CAS  Google Scholar 

  • Davies, P. J., 1973, Current theories on mode of action of auxin. Bot. Rev. 39: 139.

    Article  CAS  Google Scholar 

  • Deese, D. C., Stahmann, M. A., 1962, Pectic enzymes and cellulase formation by Fusarium oxysporum fsp. Cubense on stem tissues from resistant and susceptible banana plants. Phytopathology 52: 247.

    CAS  Google Scholar 

  • Dickinson, D. B., McCollum, D. P., 1964, Cellulase in tomato fruits. Nature (London) 203: 525.

    Article  CAS  Google Scholar 

  • Dilley, D. R., 1970, Enzymes, in: The Biochemistry of Fruits and Their Products, Vol. I ( A. C. Hulme, ed.), p. 184, Academic Press, New York.

    Google Scholar 

  • Eriksson, K. E., 1969, New methods for the investigation of cellulases, in: Celluloses and Their Applications ( R. F. Gould, ed.), pp. 83–104, American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Eriksson, K. E., Goodell, E. W., 1974, Pleotropic mutants of the wood rotting fungus Polyporus adustus lacking cellulase, mannase and xylanase. Can. J. Microbiol. 20: 371.

    Article  CAS  Google Scholar 

  • Eriksson, K. E., Razedowski, W., 1969, Extra-cellular enzyme system utilized by the fungus Chrysosporium lignorum for the breakdown of cellulose. I. Studies on enzyme production. Arch. Biochem. Biophys. 129: 683.

    Article  CAS  Google Scholar 

  • Eriksson, K. E., Petterson, B., Westermark, U., 1976, Oxidation: An important enzyme reaction in fungal degradation of cellulose. FEBS Lett. 49: 282.

    Article  Google Scholar 

  • Esau, K., 1967, Plant Anatomy, 2nd ed., John Wiley, New York.

    Google Scholar 

  • Evans, M. L., 1974, Rapid responses to plant hormones. Annu. Rev. Plant Physiol. 25: 195.

    Article  CAS  Google Scholar 

  • Fan, D. F., Maclachlan, G. A., 1966, Control of cellulase activity by indoleacetic acid. Can. J. Bot. 44: 1025.

    Article  CAS  Google Scholar 

  • Fan, D. F., Maclachlan, G. A., 1967a, Massive synthesis of ribonucleic acid and cellulase in pea epicotyl in response to indoleacetic acid with and without current cell division. Plant Physiol. 42: 1114.

    Article  CAS  Google Scholar 

  • Fan, D. F., Maclachlan, G. A., 1967b, Studies on regulation of cellulase activity and growth in excised pea epicotyl sections. Can. J. Bot. 45: 1837.

    Article  CAS  Google Scholar 

  • Farkas, V., Biely, P., Baue, S., 1973, Extra cellular β-glucanases of the yeast Saccharomyces cerevisae. Biochim. Biophys. Acta 321: 246.

    CAS  Google Scholar 

  • Fulcher, R. G., McCully, M. E., Satterfield, G., Southerland, J., 1976, 0-1,3-Glucans may be associated with cell plate formation during cytokinesis, Can. J. Biol. 54: 539.

    Google Scholar 

  • Fulcher, R. G., Satterfield, G., McCully, M. E., Wood, P. J., 1977, Observations on the aleuron layer. II. Fluorescence microscopy of the aleurone-subaleurone junction with emphasis on possible β-1,3-glucan deposits in barley, Aust. J. Plant Physiol. 4: 917.

    CAS  Google Scholar 

  • Goodenough, P. W., Kempton, R. J., 1976, The activity of cell wall degrading enzymes in tomato roots infected with Pyrenochaeta lycopersici and effect of sugar concentrations in these roots on disease development. Physiol. Plant Pathol. 9: 313.

    Article  CAS  Google Scholar 

  • Goren, R., Huberman, M., 1976, Effects of ethylene and 2,4-D on the activity of cellulase isoenzymes in abscission zones of the developing orange fruit. Physiol. Plant. 37: 123.

    Article  CAS  Google Scholar 

  • Goren, R., Teitelbaum, G., Ratner, A., 1973, The role of cellulase in the abscission of citrus leaves and fruits in relation to exogenous treatments with growth regulators. Acta Hortic. 34: 359.

    Google Scholar 

  • Greenburg, J., Goren, R., Riov, J., 1975, The role of cellulase and polygalacturonase in abscission of young and mature shamouti orange fruits. Physiol. Plant. 34: 1.

    Article  Google Scholar 

  • Hall, C. B., 1964, Cellulase activity in tomato fruits according to portion and maturity. Bot. Gaz. 125: 156.

    Article  CAS  Google Scholar 

  • Hanish-Ten-Cate, C. H., Van Netter, J., Dortland, J. F., Bruinsma, J., 1975, Cell wall solubilization in pedicel abscission of begonia hybrid flower buds. Physiol. Plant. 33: 276.

    Article  Google Scholar 

  • Hasegawa, S., Smolensky, D. C., 1971, Cellulase in dates and its role in fruit softening. J. Food Sci. 36: 966.

    Article  CAS  Google Scholar 

  • Hasija, S. K., Gulyas, F.,Szegi, J., 1979, Cellulose decomposition by phytopathogenic Iternaria spp. Acta Phyiopathol. Acad. Sci. Hung. 14: 13.

    CAS  Google Scholar 

  • Heyn, A. N. J., 1969, Glucanase activity in coleoptiles of Avena. Arch. Biochem. Biophys. 132: 442.

    Article  CAS  Google Scholar 

  • Hobson, E. G., 1968, Cellulase activity during maturation and ripening of tomato fruit. J. Food Sci. 33: 588.

    Article  CAS  Google Scholar 

  • Horton, J. C., Keen, N. T., 1966, Regulation of induced cellulase synthesis in Pyrenochaeta terrestris Gorez et al. by utilizable carbon compounds. Can. J. Microbiol. 12: 209.

    Article  CAS  Google Scholar 

  • Horton, R. F., Osborne, D. J., 1967, Senescence, abscission and cellulase in Phaseolus vulgaris. Nature (London) 214: 1086.

    Article  CAS  Google Scholar 

  • Hubbell, D. M., Norales, V. M., Umali-Garcia, M., 1978, Pectolytic enzymes in Rhizobium. Appl. Env. Microbiol. 35: 210.

    CAS  Google Scholar 

  • Huberman, M., Goren, R., 1979, Exo- and endocellular cellulase and polygalacturonase in abscission zones of developing orange fruits. Physiol. Plant 45: 189.

    Article  CAS  Google Scholar 

  • Humberman, M., Goren, R., Birk, Y., 1975, The effects of pH ionic strength and ethylene on the extraction of cellulase from abscission zones of citrus leaf explants. Plant Physiol. 55: 941.

    Article  Google Scholar 

  • Hulme, M. A., Stranks, D. W., 1970, Induction and regulation of production of cellulase by fungi. Nature (London), 226: 469.

    Article  CAS  Google Scholar 

  • Hunter, W. T., Elkan, G. H., 1975, Role of pectic and cellulotytic enzymes in the invasion of the soybean by Rhizobium japonicum. Can. J. Microbiol. 21: 1254.

    Article  CAS  Google Scholar 

  • Husain, A., Diamond, A. E., 1960, Role of cellulolytic enzymes in pathogenesis by Fusarium oxysporum f. lycopersici. Phytopathology 50: 329.

    CAS  Google Scholar 

  • Jacobs, M., Ray, P. M., 1975, Promotion of xyloglucan metabolism by acid ph. Plant Physiol. 56: 373.

    Article  CAS  Google Scholar 

  • Jacobsen, J. V., Varner, J. E., 1967, Gibberellic acid induced synthesis of protease by isolated aleurone payer of barley. Plant Physiol. 42: 1569.

    Article  Google Scholar 

  • Johanson, M., 1966, A comparison between the cellulolytic activity of white and brown rot fungi, I. The activity of insoluble cellulose. Physiol. Plant. 19: 709.

    Article  Google Scholar 

  • Jones, T., Merson, A. J., Albersheim, P., 1972, Host pathogen interactions. IV. Studies on the polysaccharide degrading enzymes secreted by Fusarium oxysporum fsp. Lycopersici. Physiol. Plant Pathol. 2: 153.

    Article  CAS  Google Scholar 

  • Kadota, H., 1959, Cellulose decomposing bacteria in the sea, in: Symposium on Marine Boring and Fouling Organisms ( D. L. Ray, ed.), pp. 332–340, University of Washington Press, Seattle.

    Google Scholar 

  • Kato, K., Yamada, A.,Noguchi, M., 1972, Purification and some properties of β-1,3-glucanase of suspension cultured tobacco cells. Agric. Biol. Chem. 37: 1269.

    Google Scholar 

  • Kawase, M., 1979, Role of cellulase in aerenchyma development in sunflower. Am. J. Bot. 66: 183.

    Article  CAS  Google Scholar 

  • King, K. W., 1963, Endwise degradation of cellulose, in: Symposium on Advances in Enzymic Hydrolysis of Cellulose and Related Matter ( E. T. Reese, ed.), pp. 159–170, Pergamon Press, New York.

    Google Scholar 

  • Kivilaan, A., Bandursky, R. S., Schulze, A., 1971, A partial characterization of an autolytic solubilized cell-wall glucan. Plant Physiol. 48: 389.

    Article  CAS  Google Scholar 

  • Koehler, D. E., Leonard, R. T., Vanderwoude, W. J., Linkins, A. E., Lewis, L. N., 1976, Association of latent cellulase activity with plasma membranes from kidney bean abscission zones. Plant Physiol. 58: 324.

    Article  CAS  Google Scholar 

  • Konar, R. N., Stanley, R. G., 1969, Wall softening enzymes in the gynoecium and pollen of Hemarocallis fulva. Planta 84: 304.

    Article  CAS  Google Scholar 

  • Kumarshinghe, R. M. K., Nutman, P. S., 1977, Rhizobium stimulated callose formation in clover root hairs and its relation to infection. J. Exp. Bot. 28: 961.

    Article  Google Scholar 

  • Labavitch, J. M., Ray, P. M., 1974, Relationship between promotion of xyloglucan metabolism and induction of elongation by indole-acetic acid. Plant Physiol. 54: 499.

    Article  CAS  Google Scholar 

  • Laxminarayana, P., Reddy, S. M., 1978, Enzymatic studies on certain fruit rot fungi. I. Production of cellulase in vitro and in vivo. Proc. Indian Acad. Sci. Sect. B 87: 135.

    Google Scholar 

  • Leighton, T. J., Stock, J. J., 1970, Isolation and preliminary characterization of developmental mutants from Microsporium gypseum. J. Bacteriol. 104: 834.

    CAS  Google Scholar 

  • Lewis, L. N., Koehler, D. E., 1979, Cellulase in the kidney bean seedling. Planta 146: 1.

    Article  CAS  Google Scholar 

  • Lewis, L. N., Varner, J. E., 1970, Synthesis of cellulase during abscission of Phaseolus vulgaris leaf explants. Plant Physiol 46: 194.

    Article  CAS  Google Scholar 

  • Lewis, L. N., Lew, F. T., Reid, P. O., Barnes, J. E., 1972, Isoenzymes of cellulase in the abscission zone of Phaseolus vulgaris, in: Plant Growth Substances ( D. J. Carr et al., eds.), pp. 234–239, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Lewis, L. N., Linkins, A. E., O’Sullivan, S., Reid, P. D., 1975, Two forms of cellulase in bean plants, in: Plant Growth Substances ( S. Kikuchi, ed.), pp. 708–718. Hirokawa, Tokyo.

    Google Scholar 

  • Linkins, A. E., Lewis, L. N., Palmer, R. L., 1973, Hormonally induced changes in the stem and petiole anatomy and cellulase enzyme patterns in Phaseolus vulgaris. Plant Physiol. 52: 554.

    Article  CAS  Google Scholar 

  • Ljunggren, H., 1969, Mechanism and pattern of Rhizobium invasion into leguminous root hairs. Physiol. Plant Suppl. 5: 1.

    Google Scholar 

  • Maclachlan, G. A., 1976, A potential role for endo-cellulase in cellulose biosynthesis. Appl. Polym. Symp. 28: 645.

    CAS  Google Scholar 

  • Maclachlan, G. A., 1977a, Cellulose metabolism and cell growth, in: Plant Growth regulation, 9th International Conference on Plant Growth Substances ( P. E. Pilet, ed.), pp. 13–20, Springer-Verlag, Berlin and Heidelberg.

    Google Scholar 

  • Maclachlan, G. A., 1977b, Cellulose metabolism in growing cells. Trends Biochem. Sci. 1977: 226–228.

    Google Scholar 

  • Maclachlan, G. A., Perrault, J., 1964, Cellulase from pea epicotyls. Nature (London) 204: 81.

    Article  CAS  Google Scholar 

  • Maclachlan, G. A., Wong, Y. S., 1979, Two pea cellulases display the same catalytic mechanism despite major differences in physical properties, in: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis (R. D. Brown, Jr., L. Jurasek, eds.), Advances in Chemistry Series No. 181, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Maclachlan, G. A., Young, M., 1962, Breakdown and synthesis of cell-walls during growth. Nature (London) 195: 1319.

    Article  Google Scholar 

  • MacLeod, A. M., McCorquodale, H., 1958, Water soluble carbohydrates of seeds of graminae. New Phytol. 57: 168.

    Article  CAS  Google Scholar 

  • Mandels, M., Reese, E. T., 1964, Fungal cellulases and the microbial decomposition of cellulosic fabrics. Dev. Ind. Microbiol. 5: 5.

    CAS  Google Scholar 

  • Manners, D. J., Marshall, J. J., 1969, Studies on carbohydrate metabolising enzymes. XXII. The β-glucanase system of malted barley. J. Inst. Brew. (London) 75: 550.

    CAS  Google Scholar 

  • Manners, D. J., Wilson, G., 1974, Purification and properties of an endo-(1–3)-β-D-glucanese from malted barley. Carbohydr. Res. 37: 9.

    Article  CAS  Google Scholar 

  • Manners, D. J., Palmer, G. H., Wilson, G., Yellowees, D., 1971, Effect of gibberellic acid on the development of some cereal carbohydrases. Biochem. J. 125: 30.

    Google Scholar 

  • Martinez-Molina, E., Morales, V. M., Hubbell, D. H., 1979, Hydrolytic enzyme production of Rhizobium, Appl. Env. Microbiol. 38: 9186.

    Google Scholar 

  • Mascarenhas, J. P., 1975, The biochemistry of angiosperm pollen development. Bot. Rev. 41: 260.

    Article  Google Scholar 

  • Masuda, Y., 1968, Role of cell-wall degrading enzymes in cell-wall loosening in oat coleoptiles. Planta 83: 171.

    Article  CAS  Google Scholar 

  • Masuda, Y., Yamamoto, R., 1970, Effect of auxin on β-1,3-glucanase activity in Avena coleoptile. Dev. Growth Differ. 11: 287.

    Article  CAS  Google Scholar 

  • Masuda, Y., Tanimoto, E., Wada, S., 1967, Effect of β,3-glucanase on the elongation growth of oat coleoptile. Bot. Mag. Tokyo 80: 100.

    CAS  Google Scholar 

  • Masuda, Y., Oi. S., Satamura, Y., 1970, Further studies on the role of cell-wall degrading enzymes in cell-wall loosening of oat coleoptiles. Plant Cell Physiol. 11: 631.

    CAS  Google Scholar 

  • Matchett, W. M, and Nance, J. F., 1962, Cell wall breakdown and growth in pea seedling systems. Am. J. Bot. 49: 311.

    Article  CAS  Google Scholar 

  • Matile, P., Cortat, M., Wiemken, A., Frey-Wyssling, A., 1971, Isolation of glucanase containing particles from budding Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 68: 636.

    Article  CAS  Google Scholar 

  • Meeuse, B. J. D., 1962, Storage products, in: Physiology and Biochemistry of Algae ( R. A. Levin, ed.), pp. 289–313, Academic Press, London.

    Google Scholar 

  • Mel’nychuck, H. H., Kolesnyeva, H. V., Danylyak, M. I., 1978, Activity dynamics of cellulase β-1,4-glucan-4-glucano hydrolases of different strains of Coriolus versicolor and Coniophora cerebella. Ukr. Bot. Zh. 35: 629.

    Google Scholar 

  • Mollard, A., Barnoud, F., 1976, Une glucane hemicellulosique 0-1,3-dans les parois des cellules de Rosier cultivées in vitro. Physiol. Veg. 14: 233.

    CAS  Google Scholar 

  • Montezinos, D., Brown, R. M. Jr., 1976, Surface architecture of the plant cell: Biogenesis of the cell wall with special emphasis on the role of plasma membrane in cellulose biosynthesis. J. Supramol. Struct. 5: 277.

    Google Scholar 

  • Moore, A. E., Stone, B. A., 1972a, A β-1,3-glucan hydrolase from Nicotiana glutinosa leaves, I. Extraction, purification and physical properties. Biochim. Biophys. Acta 258: 238.

    CAS  Google Scholar 

  • Moore, A. E., Stone, B. A., 1972b, A β,3-glucan hydrolase from Nicotiana glutinosa leaves, II. Specificity action pattern and inhibitor studies. Biochim. Biophys. Acta 258: 248.

    CAS  Google Scholar 

  • Moore, A. E., Stone, B. A., 1972c, Effect of senescence and hormone treatment on the activity of /M,3-glucan hydrolase in Nicotiana glutinosa leaves. Planta 104: 93.

    Article  CAS  Google Scholar 

  • Moore, A. E., Stone, B. A., 1972d, Effect of infection with TMV and other viruses on the level of β-1,3-glucan hydrolase in leaves of Nicotiana glutinosa. Virology 50: 791.

    Article  CAS  Google Scholar 

  • Morrison, I. N., O’Brien, T. P., 1976, Cytokinesis in the developing wheat grain: Division with and without phragmoplast. Planta 130: 57.

    Article  Google Scholar 

  • Mosse, B., 1964, Electron microscopic studies of nodule development in some clover species. J. Gen. Microbiol. 36: 49.

    Google Scholar 

  • Mueller, S. C., Brown, R. M. Jr., 1980, Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. J. Cell Biol. 84: 315.

    Google Scholar 

  • Mueller, S. C., Maclachlan, G. A., 1980, Plant membranes only utilize UDP-glucose supplied to the protoplasmic surface. Plant Physiol. Suppl. 65: 106.

    Google Scholar 

  • Mueller, S. C., Brown, R. M. Jr., Scott, T. K., 1976, Cellulosic microfibrils: Nascent stages of synthesis in a higher plant cell. Science 194: 949.

    Google Scholar 

  • Mullen, J. J., Bateman, D. F., 1975, Polysaccharide degrading enzymes produced by Fusarium roseum Avenaceum in culture and during pathogenesis. Physiol. Plant Pathol. 6: 233.

    Article  CAS  Google Scholar 

  • Mullins, J. T., Ellis, E. A., 1974, Sexual morphogenesis in Achlya: Ultra structural basis for the hormonal induction of antheridial hyphae. Proc. Natl. Acad. Sci. U.S.A. 71: 1347.

    Article  CAS  Google Scholar 

  • Nevins, D. J., 1975a, The effect of nojirimycin on plant growth and its applications concerning role for exo-β-glucanases in auxin-induced cell expansion. Plant Cell Physiol. 16: 347.

    CAS  Google Scholar 

  • Nevins, D. J., 1975b, The in vitro stimulation of IAA-induced modification of Avena cell-wall polysaccharides by an exoglucanase. Plant Cell Physiol. 16: 495.

    CAS  Google Scholar 

  • Nevins, D. J., Huber, D. J., Yamamoto, R., Loescher, W. H., 1977, β-D-Glucan of Avena coleoptile cell walls. Plant Physiol. 60: 617.

    Google Scholar 

  • Nisizawa, T., Suzuki, H., Nakayama, M., Nisizawa, K., 1971, De novo synthesis of cellulase induced by sophorose in Trichoderma viridae cells, J. Biochem. 70: 375.

    CAS  Google Scholar 

  • Nissl, D., Zenk, M. H., 1969, Evidence against induction of protein synthesis during auxin induced initial elongation of Avena coleoptiles. Planta 89: 32.

    Article  Google Scholar 

  • Norkrans, B., 1963a, Influence of some culture conditions on fungal cellulase production. Physiol. Plant. 16: 11.

    Article  CAS  Google Scholar 

  • Norkrans, B., 1963b, Degradation of cellulose. Annu. Rev. Phytopathol. 1: 325.

    Article  CAS  Google Scholar 

  • Norkrans, B., 1967, Cellulose and cellulosis. Adv. Appi. Microbiol. 9: 91.

    Article  CAS  Google Scholar 

  • Northcote, D. H., Wooding, F. B. P., 1966, Development of sieve tubes in Acer pseudoplatanus. Proc. R. Soc. London Ser. B 163: 524.

    Article  Google Scholar 

  • Olson, A. C., Bonner, J., Moore, D. J., 1965, Force extension analysis of Avena coleoptile cell elongation. Planta 66:126.

    Google Scholar 

  • Olutiola, P. O., 1978, Growth sporulation and production of pectic and cellulolytic enzymes in Fusarium oxysporum. Trans. Br. My col. Soc. 70: 109.

    Article  CAS  Google Scholar 

  • Ozawa, T., Yamaguchi, M., 1980, Increase in cellulase activity in cultured soybean cells caused by Rhizobium japonicum. Plant Cell Physiol. 21: 331.

    CAS  Google Scholar 

  • Pamiano, E. P., Juliano, B. O., 1973, Changes in the activity of some hydrolases, peroxidases and cellulases in the rice seed during germination. Plant Physiol. 52: 274.

    Article  Google Scholar 

  • Parrish, F. W., Perlin, A. S., Reese, E. T., 1960, Selective enzymolysis of poly-β-glucans and the structure of the polymers. Can. J. Chem. 38: 2094.

    Article  CAS  Google Scholar 

  • Pavlenko, V. F., Lizak, Y. U. V., 1978, Study of the cellulolytic characteristics of dark micromycetes. Mikol. Fitopatol. 12: 296.

    Google Scholar 

  • Pegg, G. F., 1976, The response of ethylene treated tomato plants to infection by Verticillium-alboatrum. Physiol. Plant Pathol. 9: 215.

    Article  CAS  Google Scholar 

  • Pesis, E., Fuchs, Y., Zauberman, G., 1978, Cellulase activity and fruit softening in avocado. Plant Physiol. 61: 416.

    Article  CAS  Google Scholar 

  • Pharr, D. M., Dickinson, D. B., 1973, Partial characterization of Cx cellulase and cellobiase from ripening tomato fruits. Plant Physiol. 51: 577.

    Article  CAS  Google Scholar 

  • Pilnik, W., Voragen, A. G. J., 1970, Pectic substances and other uronides, in: The Biochemistry of Fruits and Their Products ( A. C. Hulme, ed.), Academic Press, London.

    Google Scholar 

  • Preston, R. D., 1961, The growth of the cell wall. Encycl. Plant. Physiol. 14: 311.

    Google Scholar 

  • Preston, R. D., 1974, The Physical Biology of Plant Cell Walls, Chapman and Hall, London.

    Google Scholar 

  • Quatrano, R. S., Stevens, P. T., 1976, Cell wall assembly in Fucus zygotes. I. Characterization of the polysaccharide components. Plant Physiol. 50: 224.

    Article  Google Scholar 

  • Ramasami, R., Shanmugam, N., 1976, Studies on pectolytic and cellulolytic enzymes of Rhizoctonia-bataticola in vitro and in vivo. Indian Phytopathol. 29: 305.

    Google Scholar 

  • Rasmussen, G. K., 1973, Changes in cellulase and pectinase activities in fruit tissues and separation zones of citrus treated with cycloheximide. Plant Physiol. 51: 626.

    Article  CAS  Google Scholar 

  • Rasmussen, G. K., 1975, Cellulase activity, endogenous abscissic-acid and ethylene in 4 citrus cultivars during maturation. Plant Physiol. 55: 765.

    Article  Google Scholar 

  • Ratner, A., Goren, R., Monselise, S. P., 1969, Activity of pectin esterase and cellulase in the abscission zone of citrus leaf explants. Plant Physiol. 44: 1717.

    Article  CAS  Google Scholar 

  • Ray, P. M., 1962, Cell wall synthesis and cell elongation in oat coleoptile tissue. Am. J. Bot. 49: 928.

    Article  CAS  Google Scholar 

  • Rayle, D. L., Haughton, P. M., Cleland, R., 1970, An in vitro system that stimulates plant cell extension growth. Proc. Natl. Acad. Sci. U.S.A. 67: 1814.

    Article  CAS  Google Scholar 

  • Reese, E. T. (ed.), 1963, Advances in Enzymic Hydrolysis of Cellulose and related Materials, Pergamon Press, New York.

    Google Scholar 

  • Reese, E. T., 1977, Degradation of polymeric carbohydrates by microbial enzymes. Recent Adv. Phytochem. 11: 311.

    CAS  Google Scholar 

  • Reese, E. T., Mandels, M., 1959, β-d-1,3-Glucanases in fungi. Can. J. Microbiol. 5: 173.

    Google Scholar 

  • Reese, E. T., Mandels, M., 1963, Enzymatic hydrolysis of β-glucans, in: Enzymic Hydrolysis of Cellulose and Related Materials ( E. T. Reese, ed.), pp. 197–234, Pergamon Press, New York.

    Google Scholar 

  • Reese, E. T., Parrish, F. W., 1971, Nojirimycin and d-glucono-l,5-lactone as inhibitors of carbohydrases. Carbohydr. Res. 18: 381.

    Article  CAS  Google Scholar 

  • Reese, E. T., Perlin, A. S., 1963, Enzymic preparation of 3-O-cellobiosyl D-glucose, Biochem. Biophys. Res. Commun. 12: 194.

    Article  CAS  Google Scholar 

  • Reid, P. D., Strong, H. G., Lew, F., Lewis, L. N., 1974, Cellulase and abscission in red kidney bean (Phaseolus vulgaris). Plant Physiol. 53: 732.

    Article  CAS  Google Scholar 

  • Ridge, I., Osborne, D. J., 1969, Cell growth and cellulases, regulation by ethylene and indole-β-acetic acid in shoots of Pisum sativum. Nature (London) 223: 310.

    Article  Google Scholar 

  • Roeb, L., Stegemann, H., Langerfield, E., 1977, Variation in the activity of polysaccharide and protein degrading enzymes and potato rotting pathogens of the genus Fusarium, Potato Res. 20: 23.

    Article  CAS  Google Scholar 

  • Roland, J. C., Vian, B., 1979, The wall of the growing plant cell: Its three dimensional organization. Int. Rev. Cytol. 61: 129.

    Article  Google Scholar 

  • Ruesink, A. W., 1969, Polysaccharidases and the control of cell-wall elongation. Planta 89: 95.

    Article  CAS  Google Scholar 

  • Sassen, M. M. A., 1965, Breakdown of the plant cell wall during the cell fusion process. Acta Bot. Neer. 14: 165.

    CAS  Google Scholar 

  • Selby, K., Maitland, C. C., 1967, The cellulase of Trichoderma viridae: Separation of its components involved in the solubilization of cotton. Biochem. J. 104: 716.

    CAS  Google Scholar 

  • Sheldrake, A. R., 1970, Cellulase and cell differentiation in Acer pseudoplatanus. Planta 95: 167.

    Article  CAS  Google Scholar 

  • Smith, M. M.,McCully, M. E., 1977, Mild temperature stress and callose synthesis. Planta 136: 65.

    Google Scholar 

  • Sobotka, F. E., Stelzig, D. A., 1974, An apparent cellulase complex in tomato (Lycopersicon esculatum L.) fruits. Plant Physiol. 53: 759.

    Article  CAS  Google Scholar 

  • Sobotka, F. E., Watada, A. E., 1971, Cellulase in high pigment and crimson tomato fruit. J. Am. Soc. Hortic. 96: 705.

    CAS  Google Scholar 

  • Sterling, M., 1954, Sclereid development and the texture of Bartlet pears. J. Food Res. 19: 433.

    Google Scholar 

  • Stieglitz, H., Stern, H., 1973, Regulation of β-l,3-glucanase activity in developing anthers of lilium. Dev. Biol. 34: 169.

    Article  CAS  Google Scholar 

  • Tanimoto, E.,Masuda, Y., 1968, Effect of auxin on cell-wall degrading enzymes. Physiol. Plant. 21: 820.

    Article  Google Scholar 

  • Thomas, D. des S., Mullins, J. T., 1967, Role of enzymatic wall softening in plant morphogenesis: Hormonal induction in Achlya. Science 156: 84.

    Article  CAS  Google Scholar 

  • Thomas, D. de., S., Lutzac, M., Manavathu, E., 1974, Cytochalasin selectivity inhibits synthesis of a secretory protein cellulase in Achlya. Nature (London) 249: 140.

    Article  CAS  Google Scholar 

  • Tracey, M. V., 1950, Cellulase from leaves and roots of tobacco. Biochem. J. 47: 431.

    CAS  Google Scholar 

  • Tracey, M. V., 1959, Role of cellulase in nature, in: Marine Boring and Fouling Organisms ( D. L. Ray, ed.), pp. 253–264, University of Washington Press, Seattle.

    Google Scholar 

  • Verma, D. P. S., 1982, Plant-Rhizobium interactions in symbiotic nitrogen fixation, in: Molecular Biology of Plant Development ( H. Smith, D. Grierson, eds.), pp. 437–466, Blackwell, Oxford.

    Google Scholar 

  • Verma, D. P. S., Maclachlan, G. A., Byrne, H., Evings, D., 1975, Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin treated pea epicotyls. J. Biol. Chem. 250: 1019.

    CAS  Google Scholar 

  • Verma, D. P. S., Zogbi, V., Bal, A. K., 1978a, A cooperative action of plant and Rhizobium in dissolving host cell-wall during development of symbiosis. Plant. Sci. Lett. 13: 137.

    Article  Google Scholar 

  • Verma, D. P. S., Kazazian, V., Zogbi, V., Bal, A. K., 1978b, Isolation and characterization of the membrane envelope enclosing the bacterioids in soybean root nodules. J. Cell Biol. 78: 919.

    Article  CAS  Google Scholar 

  • Villa, T. G., Notario, V., Benitex, T., Villanueva, J. R., 1976, Purification of an exo-1,3-β- glucanase from Candida utilis. Can. J. Biochem. 54: 927.

    Article  CAS  Google Scholar 

  • Wada, S., Tanimoto, E., Masuda, Y., 1968, Cell elongation and metabolic turnover of the cell-wall as affected by auxin and cell-wall degrading enzymes. Plant Cell Physiol. 9: 123.

    Google Scholar 

  • Webster, B. D., 1968, Anatomical aspects of abscission. Plant Physiol. 43: 1512.

    CAS  Google Scholar 

  • Wiemken-Gehrig, V., Wiemken, A., Matile, P., 1974, Mobilisation von Zellwardstoffen in der welkenden Blute von Ipomoea tricolor cav. Planta 115: 297.

    Article  CAS  Google Scholar 

  • Willison, J. H. M., Brown, R. M. Jr., 1977, An examination of the developing cotton fibre: Wall and plasmalemma. Protoplasma 92: 21.

    Google Scholar 

  • Willison, J. H. M., Brown, R. M. Jr., 1978, Cell wall structure and deposition in Glaucoystis, J. Cell Biol. 72: 103.

    Google Scholar 

  • Willison, J. H. M., Grout, B. W. W., 1978, Further observations on cell wall formation around isolated protoplasts of tobacco and tomato. Planta 140: 57.

    Article  Google Scholar 

  • Wong, Y. S., 1979, Studies on endo-1,3-β-D-glucanases from Pisum sativum: Purification, development and enzymic properties, Ph.D. thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Wong, Y. S., Maclachlan, G. A., 1979. 1,3-β-D-Glucanases from Pisum sativum seedlings. II. Substrate specificities and enzymic action patterns. Biochim. Biophys. Acta 571: 256.

    Google Scholar 

  • Wong, Y. S., Jr. Maclachlan, G. A., 1980, 1,3-β-d Glucanases from Pisum sativum seedlings. III. Development and distribution of endogenous substrates. Plant Physiol. 65:222.

    Google Scholar 

  • Wong, Y. S., Fincher, G. B., Maclachan, G. A., 1977a, Kinetic properties and substrate specificities of two cellulases from auxin treated pea epicotyls. J. Biol. Chem. 252: 1402.

    CAS  Google Scholar 

  • Wong, Y. S., Fincher, G. B., Maclachlan, G. A., 1977b, Cellulase can enhance β-glucan synthesis. Science 195: 679.

    Article  CAS  Google Scholar 

  • Wood, T. M., 1968, Cellulolytic enzyme system of Trichoderma koningii: Separation of components attacking native cotton. Biochem. J. 109: 217.

    CAS  Google Scholar 

  • Wood, T. M., 1969, The cellulase of Fusarium solani: Resolution of the enzyme complex. Biochem. J. 115: 457.

    CAS  Google Scholar 

  • Wood, T. M., McCrae, S. I., 1979, Synergism between enzymes involved in the solubilisation of native cellulose, in: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis ( R. D. Brown, L. Jurasek, eds.), pp. 181–209, American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Woodward, J. R., Keane, P. J., Stone, B. A., 1979, β-Glucans and O-glucan hydrolases in plant pathogenesis with special reference to wilt inducing toxins from Phytophthora species, in: Fungal Polysaccharides (P. A. Standford, K. Masuda, eds.), Advances in Chemistry Series, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Yamaki, S., Kakiuchi, N., 1979, Changes in hemicellulose degrading enzymes during development and ripening of Japanese pear fruit. Plant Cell Physiol. 20: 301.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Verma, D.P.S., Kumar, V., Maclachlan, G.A. (1982). β-Glucanases in Higher Plants: Localization, Potential Functions, and Regulation. In: Brown, R.M. (eds) Cellulose and Other Natural Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1116-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1116-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1118-8

  • Online ISBN: 978-1-4684-1116-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics