Skip to main content

Biogenesis of Cellulose I Microfibrils Occurs by Cell-Directed Self-Assembly in Acetobacter xylinum

  • Chapter

Abstract

The biogenesis of native cellulose is a complex process requiring the biosynthesis of high-molecular-weight β 1,4-glucans; the formation of highly crystalline, metastable cellulose I microfibrils; and, in many cases, the organization and orientation of these microfibrils into cell walls (Colvin, 1964). Proposed mechanisms of cellulose biogenesis have historically been intimately related to the contemporary understanding of the physical structure of cellulose (Ranby, 1952; Preston, 1964). It is evident that any proposed mechanism of cellulose biogenesis must be consistent with the ultimate physical properties of the macromolecule. Since almost all native cellulose is fibrillar cellulose I, it is probable that there is a common biosynthetic mechanism among all organisms that produce crystalline cellulose I microfibrils (Sarko and Muggli, 1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baugh, P. J., Phillips, G. O., 1954, Degradation of cellulose and its derivatives. D. Photochemical degradation, in: Cellulose and Cellulose Derivatives, Vol. 5, No. 5 ( T. E. Timell, ed.), p. 1066, Wiley-Interscience, New York.

    Google Scholar 

  • Ben-Hayim, G., Ohad, I., 1965, Synthesis of cellulose by Acetobacter xylinum. VIII. On the formation and orientation of bacterial cellulose fibrils in the presence of acidic polysaccharides. J. Cell Biol 25: 191.

    Article  Google Scholar 

  • Benziman, M., Haigler, C. H., Brown, R. M. Jr., White, A. R., Cooper, K. M., 1980, Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc. Natl. Acad. Sci. U.S.A. 77: 6678.

    Article  CAS  Google Scholar 

  • Blackwell, J., Kolpak, F. J., 1976, Cellulose microfibrils as disordered arrays of elementary fibrils, in: Applied Polymer Symposia, 28 ( T. E. Timell, ed.), pp. 751–761, John Wiley, New York.

    Google Scholar 

  • Brown, R. M. Jr., Montezinos, D., 1976, Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 73: 143.

    Article  CAS  Google Scholar 

  • Brown, R. M. Jr., Willison, J. H. M., Richardson, C. L., 1976, Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73: 4565.

    Article  CAS  Google Scholar 

  • Chanzy, H., Imada, K., Vuong, R., 1978, Electron diffraction from the primary wall of cotton fibers. Protoplasma 94: 299.

    Article  Google Scholar 

  • Chanzy, H., Imada, K., Mollard, A., Vuong, R., Barnard, F., 1979, Crystallographic aspects of sub-elementary cellulose fibrils occurring in the walls of rose cells cultured in vitro. Protoplasma 100: 317.

    Article  Google Scholar 

  • Colvin, J. R., 1964, The biosynthesis of cellulose, in: The Formation of Wood in Forest Trees ( M. H. Zimmerman, ed.), pp. 189–201, Academic Press, New York.

    Google Scholar 

  • Colvin, J. R., 1972, The structure and biosynthesis of cellulose. CRC Crit. Rev. Macromol. Sci. 1: 47.

    CAS  Google Scholar 

  • Colvin, J. R., 1980, The mechanism of formation of cellulose-like microfibrils in a cell-free system from Acetobacter xylinum. Planta 149: 97.

    Article  CAS  Google Scholar 

  • Cooper, D., Manley, R. St. John, 1975, Cellulose synthesis by Acetobacter xylinum. III. Matrix, primer and lipid requirements and heat stability of the cellulose forming enzymes. Biochim. Biophys. Acta 381: 109.

    Article  CAS  Google Scholar 

  • Delmer, D. P., 1977, The biosynthesis of cellulose and other plant cell wall polysaccharides, in: Recent Advances in Phytochemistry II ( F. A. Leowus, U. C. Runeckles, eds.), pp. 45–77, Plenum Press, New York.

    Google Scholar 

  • Franke, W. W., Ermen, B., 1969, Negative staining of plant slime cellulose: An examination of the elementary fibril concept. Z. Naturforsch. 24: 918.

    CAS  Google Scholar 

  • Frey-Wyssling, A., Miihlethaler, K., 1963, Die Elementarfibrillen der Cellulose. Makromol. Chem. 62: 25.

    Article  CAS  Google Scholar 

  • Frey-Wyssling, A., Miihlethaler, K., Muggli, R., 1966, Elementarfibrillen als Grundbausteine der nativen Cellulose. Holz Roh-Werkst. 24: 443.

    Article  CAS  Google Scholar 

  • Gardner, K. H., Blackwell, J., 1974a, The structure of native cellulose. Biopolymers 13: 1975.

    Google Scholar 

  • Gardner, K. H., Blackwell, J., 1974b, The hydrogen bonding in native cellulose. Biochim. Biophys. Acta 343: 232.

    Article  CAS  Google Scholar 

  • Giddings, T. H. Jr., Brower, P. L., Staehelin, L. A., 1980, Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol. 84: 327.

    Article  Google Scholar 

  • Haigler, C., Brown, R. M. Jr., Benziman, M., 1980, Calcofluor White alters the in vivo assembly of cellulose microfibrils. Science 210: 903.

    Article  CAS  Google Scholar 

  • Hanna, R. B., Cote, W. A. Jr., 1974, The sub-elementary fibril of plant cell wall cellulose. Cytobiologie 10: 102.

    Google Scholar 

  • Lanter, J., 1966, Properties and evaluation of fluorescent brightening agents. J. Soc. Dyers Colour. 82: 125.

    Article  CAS  Google Scholar 

  • Maeda, H., Ishida, N., 1967, Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem. 62: 276.

    CAS  Google Scholar 

  • Manley, R. St. John, 1971, Molecular morphology of cellulose. J. Polym. Sci. Polym. Phys. Ed. 9: 1025.

    Google Scholar 

  • Marchessault, R. H., Morehead, F. F., Walter, N. M., 1959, Liquid crystal systems from fibrillar polysaccharides, Nature (London) 184: 632.

    Article  CAS  Google Scholar 

  • Mueller, S. C., Brown, R. M. Jr., 1980, Evidence for an intramembrane component associated with a cellulose microfibril-synthetic complex in higher plants. J. Cell Biol. 84: 315.

    Article  CAS  Google Scholar 

  • Miihlethaler, K., 1967, Ultrastructure and formation of plant cell walls. Annu. Rev. Plant Physiol. 18: 1.

    Article  Google Scholar 

  • Nieduszynski, I., Preston, R. D., 1970, Crystallite size in natural cellulose, Nature (London) 225: 274.

    Article  Google Scholar 

  • Preston, R. D., 1964, Structural plant polysaccharides. Endeavor 23: 153.

    Article  CAS  Google Scholar 

  • Ranby, B. G., 1952, The mercerisation of cellulose I: A thermodynamic discussion. Acta Chem. Scand. 6: 101.

    Article  CAS  Google Scholar 

  • Rattee, I. D. and Breuer, M. M., 1974, The Physical Chemistry of Dye Adsorption, pp. 180–182, Academic Press, New York

    Google Scholar 

  • Sarko, H., Muggli, R., 1974, Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7: 486.

    Article  CAS  Google Scholar 

  • Stockmann, V. E., 1972, Developing a hypothesis: Native cellulose elementary fibrils are formed with metastable structure. Biopolymers 11: 251.

    Article  Google Scholar 

  • White, A. R., Brown, R. M. Jr., 1981, Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Natl. Acad. Sci. U.S.A. 78: 1047.

    Article  CAS  Google Scholar 

  • Willison, J. H. M., Brown, R. M. Jr., 1978, Cell wall structure and deposition in Glaucocystis. J. Cell Biol. 78: 103.

    Article  Google Scholar 

  • Zaar, K., 1977, The biogenesis of cellulose by Acetobacter xylinum. Cytobiologie 16: 1.

    CAS  Google Scholar 

  • Zaar, K., 1979, Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J. Cell Biol. 80: 773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Haigler, C.H., Benziman, M. (1982). Biogenesis of Cellulose I Microfibrils Occurs by Cell-Directed Self-Assembly in Acetobacter xylinum . In: Brown, R.M. (eds) Cellulose and Other Natural Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1116-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1116-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1118-8

  • Online ISBN: 978-1-4684-1116-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics