Skip to main content

Baryonic Number Nonconservation in Subcomponent Models for Quarks and Leptons

  • Chapter
Gauge Theories, Massive Neutrinos and Proton Decay

Part of the book series: Studies in the Natural Sciences ((SNS,volume 18))

  • 52 Accesses

Abstract

There are several reasons for taking into account the possibility that quarks and leptons are composite particles1. We recall the recent discoveries of new quarks and leptons and their apparent organization in families. Furthermore, quarks and leptons must be intimately connected, as shown for instance by the fact that |Q(electron)| = Q(proton). The emerging picutre is one in which quarks and leptons are indeed composite particles made up of the same elementary entities. Many models have been proposed so far2, but none of them can be considered completely satisfying. Another reason to consider quarks and leptons as composite particles has been pointed out by ‘t Hooft 3,4 As it is well known, in a broken gauge theory, the Higgs fields give rise to many arbitrary parameters (masses, Yukawa couplings, vacuum expectation values). Furthermore, they give origin to instabilities in the theory against small variations of the parameters (see for instance L. Susskind5). A way out of these difficulties (unless supersymmetries regulate the theory) is the dynamical syimnetry breaking; i.e., Higgs fields must be regarded as fermion-antifermion bound states. An example of theories of this type is given by technicolor theories (TC)5, which howeverare uncapable of giving masses to the fermions unless further broken gauge interactions (extended technicolor ETC)6 are postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. This talk is based on the papers: R. Casalbuoni and R. Gatto, University of Geneva preprint UGVA-DPT 1981/01–273; R. Casalbuoni and R. Gatto, to be published.

    Google Scholar 

  2. J. C. Pati and A. Salam, Phys. Rev. D10 (1974) 275

    Google Scholar 

  3. J. C. Pati, A. Salam and J. Strathdee, Phys. Letters 59B (1975) 265;

    Google Scholar 

  4. O.W. Greenberg and C. A. Nelson, Phys. Rev. D10 (1974) 2567

    Google Scholar 

  5. O.W. Greenberg, Phys. Rev. Letters 35 (1975) 1120

    Article  Google Scholar 

  6. E. Nowak, J. Sucher and C. H. Woo, Phys. Rev. B16 (1977) 2874

    Google Scholar 

  7. H. Terazawa, Y. Chicashige and K. Akama, Phys. Rev. D15 (1977) 480;

    Google Scholar 

  8. H. Terazawa, Phys. Rev. D22 (1980) 184;

    Google Scholar 

  9. Y. Neeman, Phys. Letters 82B (1979) 69;

    Google Scholar 

  10. H. Harari, Phys. Letters 86B (1979) 83

    Google Scholar 

  11. M. A. Shupe, Phys. Letters 86B (1979) 87;

    Google Scholar 

  12. J. G. Taylor, Phys. Letters 88B (1979) 291;

    Google Scholar 

  13. C.A. Nelson, Phys. Letters 93B (1980) 143;

    Google Scholar 

  14. E. J. Squires, Phys. Letters 94B (1980) 54;

    Google Scholar 

  15. L. G. Mestres, Orsay preprint LPTHE 80–8 (1980)

    Google Scholar 

  16. I. Montvay, Phys. Letters 95B (1980) 227

    Google Scholar 

  17. E. Derman, Phys. Letters 95B (1980) 369

    Google Scholar 

  18. M. Veltman, Proceedings Lepton-Photon Symposium, FermiLab 1979, p. 529 (Eds. T. Kirk and A. Abarbanel)

    Google Scholar 

  19. S. L. Adler, Phys. Rev. D21 (1980) 2903

    Google Scholar 

  20. J. Ellis, M.K. Gaillard and B. Zumino, Phys. Letters 94B (1980) 343

    Google Scholar 

  21. R. Barbieri, L. Maiani and R. Petronzio, Phys. Letters 94D (1980) 63

    Google Scholar 

  22. F. Mansouri, Yale Preprint YTP80–25 (1980)

    Google Scholar 

  23. S. Dimopoulos, S. Raby and L. Susskind, Nucl. Phys. B173 (1980) 280

    Google Scholar 

  24. T. Banks, S. Yankielowicz and A. Schwimmer, Phys. Letters 96B (1980) 67

    Google Scholar 

  25. R. Casalbuoni, G. Domokos and S. KóVesi- Domokos, SLAC preprint 2580 (1980)

    Google Scholar 

  26. O.W. Greenberg and J. Sucher, Maryland report 81–026 (1980)

    Google Scholar 

  27. J.C. Pati, Trieste preprint (1980)

    Google Scholar 

  28. H. Harari and N. Seiberg, Phys. Letters 94B (1980) 269.

    Google Scholar 

  29. For possible signatures of subquarks, see: V. Visnjic-Trianta- fillou, Phys. Letters (1980) 47

    Google Scholar 

  30. J. Leite Lopes, J. A. Martin Simoes and D. Spehler, Phys. Letters 94B (1980) 367

    Google Scholar 

  31. A. De Rujula, Phys. Letters 96B (1980) 279

    Google Scholar 

  32. H. Schnitzer, Brandéis University preprint (1980).

    Google Scholar 

  33. For a recent review, see: R. Gatto, Proceedings of the Conference on “Grand Unified Theories of Fundamental Interactions”, Eds. S. Ferrara, J. Ellis and P.Van Niewenhuizen, Plenum Publishing Corporation, New York (1980).

    Google Scholar 

  34. G. ‘t Hooft, Cargese Institute Lectures (1979).

    Google Scholar 

  35. Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, Weizmann Institute preprint (1980);

    Google Scholar 

  36. G. Farrar, Phys. Letters 96B (1980) 273.

    Google Scholar 

  37. S. Weinberg, Phys. Rev. D13 (1976) 974

    Google Scholar 

  38. S. Weinberg Phys. Rev. D19 (1978) 1277;

    Google Scholar 

  39. L. Susskind, Phys. Rev. D20 (1979) 2619.

    Google Scholar 

  40. S. Dimopoulos and L. Susskind, Nucl. Phys. B155 (1979) 237.

    Article  Google Scholar 

  41. S. Raby, S. Dimopoulos and L. Susskind, Stanford preprint ITP-653 (1980).

    Google Scholar 

  42. See however, a recent paper by T. Banks and A. Schwimmer, ICTP/80/81–6 in which.is shown that vector-like theories3 with subcolor group (SU(N)) can satisfy *t Hooft conditions.

    Google Scholar 

  43. Models of this type have been considered by R. Casalbuoni and R. Gatto, Phys. Letters 93B (1980) 47.

    Google Scholar 

  44. The restriction to an even number of flavors is due to the relation with the subcolors number.

    Google Scholar 

  45. Due to the relation between number of subcolors and number of flavors in our models, it does not make any sense to require the Appelquist-Carrazone condition. However, for the

    Google Scholar 

  46. case U(n)L 0 U(n)R the ‘t Hooft equations for three SU(n)L K L

    Google Scholar 

  47. currents and for two SU(n)L currents and one U(l) current are not compatible. In the case U(2n) we have only one ‘t Hooft equation which is satisfied by an index 1 = N. For a subcolor group 0(17) or 0(15) we get 1 = 17 or 1 = 15.

    Google Scholar 

  48. See for instance, S. Chanda and P. Roy, CERN preprint (1980).

    Google Scholar 

  49. S. Weinberg, Harvard preprint HUTP-80/A023 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casalbuoni, R. (1981). Baryonic Number Nonconservation in Subcomponent Models for Quarks and Leptons. In: Perlmutter, A. (eds) Gauge Theories, Massive Neutrinos and Proton Decay. Studies in the Natural Sciences, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1107-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1107-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1109-6

  • Online ISBN: 978-1-4684-1107-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics