Skip to main content

Gauge Hierarchy, Decoupling, and Heavy Particle Effects

  • Chapter
  • 56 Accesses

Part of the book series: Studies in the Natural Sciences ((SNS,volume 18))

Abstract

We deal with the problems of a large gauge hierarchy and decoupling in theories with spontaneously broken symmetry. They are relevant to the current developments of grand unification, in which several vacuum expectation values of scalar fields are introduced, with one of them (V) much larger than all the others. We shall show to all orders in the loop expansion that: (1) Once we make a proper identification of the light particles and of the heavy particles at the tree level, then such a division will be maintained order by order in the loop expansion without the necessity of fine tuning. The correction to the light masses in each order is only logarithmic in V. (2) To v(1) accuracy, there is a local renormalizable effective Lagrangian, composed of light fields only, which can be used to reproduce all the one light particle irreducible Green’s functions for external momenta ≪ V. (3) A set of renormalization group equations can be written down, wherein one stays in the lower energy region to correlate the two sets of parameters in the full and the effective light theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. K. Symanizk, Comm. Math. Phys. 34, 7 (1973)

    Article  Google Scholar 

  2. T. Appelquist and J. Carazzone, Phys. Rev. D11, 2856 (1975).

    Google Scholar 

  3. The original gauge hierarchy problem was pointed out by E. Gildener, Phys. Rev. D14, 1667 (1976). For further discussion and references see I. Bars, invited talk at Orbis Scientiae 1979, Coral Gables, Florida

    Google Scholar 

  4. E. Gildner, Phys. Letts. 92B, 111 (1980)

    Google Scholar 

  5. K.T. Mahanthappa and D.G. Unger, preprint COLO-HEP-14 and UM HE 79–31, (revised 1980).

    Google Scholar 

  6. There has been a flurry of activity in demonstrating decoupling at the one loop or two loop level. A partial list is: B. Ovrut and H. Schnitzer, Phys. Rev. D21, 3369 (1980), D22, 2518 (1980) and Brandéis preprints; T. Hagiwara and N. Nakazawa, preprint HUTP-80/A012

    Google Scholar 

  7. F.T. Hadjioannou, A.B. Lahanas and C.E. Vayonakis, Phys. Lett. 84B, 427 (1979)

    Google Scholar 

  8. G. Senjanovic and A. Sokorac, Nucl. Phys. B164, 305 (1980)

    Article  Google Scholar 

  9. M. Yoshimura, Prog. Theor. Phys. 353 and 594 (1980). For different approaches, see S. Weinberg, Phys. Letts. 91B, 51 (1980), N.P. Chang, A. Das and J. Perez-Mercader, Phys. Rev. 1414 (1980)

    Google Scholar 

  10. P. Binetruy and T. Schucker, CERN preprints TH-2802-CERN, TH 2857-CERN: L. Hall, preprint HUTP-80/A024.

    Google Scholar 

  11. J.C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973)

    Google Scholar 

  12. H. Georgi and S. L. Glashow, Phys. Rev. Letts. 32, 438 (1974)

    Article  Google Scholar 

  13. H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Letts. 23, 451 (1974).

    Article  Google Scholar 

  14. For a review and further references, see J. Ellis, M.K. Gaillard, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B176, 61 (1980).

    Google Scholar 

  15. Y. Kazama, D. Unger and Y.-P. Yao, UM HE 80–36; Y. Kazama and Y.-P. Yao, FERMILAB-PUB-81/18-THY.

    Google Scholar 

  16. M. Veltman, Acta Physica Polonica B8, 475 (1978)

    Google Scholar 

  17. G. Senjanovic and A. Sokorac, Phys. Rev. D18, 2708 (1978)

    Google Scholar 

  18. D. Toussaint, Phys. Rev. D18, 1626 (1978)

    Google Scholar 

  19. T. Appelquist and R. Shankar, Nucl. Phys. B158, 317 (1979)

    Article  Google Scholar 

  20. T. Appelquist and C. Bernard, Phys. Rev. D22, 200 (1980)

    Google Scholar 

  21. A. Longhitano, Phys. Rev. D22, 1166 (1980).

    Google Scholar 

  22. A partial list is: D.A. Ross, Nucl. Phys. B140, 1 (1978)

    Google Scholar 

  23. A.J. Buras, J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B135, 66 (1978)

    Article  Google Scholar 

  24. T. Goldman and D.A. Ross, Phys. Lett. 84B, 208 (1979)

    Google Scholar 

  25. C.H. Llewellyn-Smith, G.G. Ross, and J.F. Wheater, Oxford Preprint 1980

    Google Scholar 

  26. I. Antoniadis, C. Bouchiat, J. Illipoulos, LPTENS 80/21 (1980).

    Google Scholar 

  27. These Green’s functions were discussed by, e.g., B.W. Lee in Chiral Dynamics (Gordon and Breach, New York, 1972).

    Google Scholar 

  28. W. Zimmermann, in Lectures on Elementary Particles and Quantum Field Theory, edited by S. Deser et al. (MIT Press, Cambridge, Mass., 1971), Vol. I, p. 397.

    Google Scholar 

  29. C. Becchi, A. Rouet and R. Stora, CPT report, Marseille, 1974 (unpublished) and Ann. Phys. (N.Y.) 287 (1976).

    Google Scholar 

  30. This result, when generalized to other bigger groups such as SU(5), agrees with that given by H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Letts. 33, 451 (1974).

    Google Scholar 

  31. A great part of this work was done in collaboration with Y. Kazama. I take liberty in reproducing it here. For a general treatment, see Y. Kazama and Y.-P. Yao, Phys. Rev. Letts. 1562 (1979); Phys. Rev. m, 1116, 1138 (1980); ibid., D22, 514 (1980)

    Google Scholar 

  32. C.K. Lee, Nucl. Phys. B161, 171 (1979).

    Article  Google Scholar 

  33. B.E. Lautrup and E. de Rafael, Phys. Rev. 174, 1835 (1968). It may be noted here that a formal large mass limit in the functional technique leads to an erroneous result, as pointed out by B. Ovrut and H. Schnitzer, Brandeis preprint (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yao, YP. (1981). Gauge Hierarchy, Decoupling, and Heavy Particle Effects. In: Perlmutter, A. (eds) Gauge Theories, Massive Neutrinos and Proton Decay. Studies in the Natural Sciences, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1107-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1107-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1109-6

  • Online ISBN: 978-1-4684-1107-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics