Skip to main content

Reaction Rate Methods in Fluorescence Analysis

  • Chapter
Book cover Modern Fluorescence Spectroscopy

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

In analytical kinetic methods, the change in concentration of some species with time is measured and related to the original analyte concentration. A dynamic measurement may be made during the reaction in which the rate of change of the monitored characteristic is obtained, or the reaction may be quenched after a given time period and a static measurement made. A suitable reaction monitoring technique such as spectrophotometry, potentiometry, fluorometry, or amperometry can be employed. The measured change in reaction monitor signal is related to the initial concentration of the analyte. This type of analytical measurement scheme can be contrasted with more conventional equilibrium-based procedures in which the analytical reaction is allowed to go to completion before measurements are made of the reaction monitor signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A History of Analytical Chemistry,H. A. Laitenen and G. W. Ewing, eds. (Division of Analytical Chemistry of the American Chemical Society, Washington, D.C., 1977).

    Google Scholar 

  2. H. L. Pardue, “A Comprehensive Classification of Kinetic Methods of Analysis Used in Clinical Chemistry,” Clin. Chem. 23, 2189–2201 (1977).

    CAS  Google Scholar 

  3. W. Roberts, “On the Estimation of the Amylolytic and Proteolytic Activity of Pancreatic Extracts,” Proc. R. Soc. London 32, 145–161 (1881).

    Article  Google Scholar 

  4. W. A. Johnson, “A Proposed Method for the Routine Valuation of Diastase Preparations,” J. Am. Chem. Soc. 30, 798–805 (1908).

    Article  CAS  Google Scholar 

  5. H. Baines, “A Stop-Watch Method for the Determination of Iodide in Mixtures of Halides,” J. Soc. Chem. Ind. 49 PT, 481T - 482T (1930).

    Google Scholar 

  6. E. B. Sandell and I. M. Koithoff, “Chronometric Catalytic Method for the Determination of Micro Quantities of Iodine,” J. Am. Chem. Soc. 56, 1426–1430 (1934).

    Article  CAS  Google Scholar 

  7. D. P. Shcherbov, O. D. Inyutina, and A. I. Ivankova, “Catalytic Reactions in Photometric Methods of Analysis, Communication 3. Fluorometric Determination of Iridium from the Reduction of Cerium(IV) to Cerium(III) by Antimony(III) and Arsenic(III),” Zh. Anal. Khim. 28, 1372–1375 (1973).

    CAS  Google Scholar 

  8. Investigations in the Area of Chemical and Physical Methods of Analyzing Mineral Ores“ (in Russian), Ob’ ed. Nauchno. Tekh. Izdatel. KazIMS, Alma-Ata,No. 4 (1975) as referenced by D. P. Shcherbov and R. N. Plotnikova, ”Luminescence Analysis of Inorganic Substances (Survey)“ Zavod. Lab. 42(12), 1429–1449 (1976).

    Google Scholar 

  9. L. B. Rogers, “Analytical Chemistry: The Journal and the Science, the 1950’s,” Anal. Chem. 50, 1298A - 1301A (1978).

    Article  Google Scholar 

  10. T. S. Lee and I. M. Kolthoff, “Analysis of Mixtures Based on Rates of Reaction,” Ann. N.Y. Acad. Sci. 53, 1093–1107 (1951).

    Article  CAS  Google Scholar 

  11. S. Siggia and J. G. Hanna, “Use of Differential Reaction Rates to Analyze Mixtures of Organic Materials Containing the Same Functional Group. Application to Mixtures of Isomeric Primary and Secondary Alcohols and to Mixtures of Aldehydes and Ketones,” Anal. Chem. 33, 896–900 (1961).

    Article  CAS  Google Scholar 

  12. H. B. Mark, Jr., L. J. Papa, and C. N. Reilley, “Reaction Rate Methods,” Adv. Anal. Chem. Instrum. 2, 255–385 (1963).

    CAS  Google Scholar 

  13. H. B. Mark, Jr., “Reaction Rate Methods in Analysis,” Talanta 19, 717–746 (1972).

    Article  CAS  Google Scholar 

  14. H. B. Mark, Jr. and G. A. Rechnitz, Kinetics in Analytical Chemistry ( Wiley—Interscience, New York, 1968 ).

    Google Scholar 

  15. K. B. Yatsimerskii, Kinetic Methods of Analysis ( Pergamon Press, Oxford, 1966 ).

    Google Scholar 

  16. H. L. Pardue in Advances in Analytical Chemistry and Instrumentation, Vol. 7, C. N. Reilley and F. W. McLafferty, eds. ( Wiley—Interscience, New York, 1968 ), pp. 141–207.

    Google Scholar 

  17. W. J. Blaedel and G. P. Hicks in Advances in Analytical Chemistry and Instrumentation, Vol. 3, C. N. Reilley and F. W. McLafferty, eds. ( Wiley—Interscience, New York, 1964 ), pp. 126–140.

    Google Scholar 

  18. H. A. Mottola and H. B. Mark, Jr., “Kinetic Determinations and Some Kinetic Aspects of Analytical Chemistry,” Anal. Chem. 52, 31R - 40R (1980);

    CAS  Google Scholar 

  19. H. A. Mottola and H. B. Mark, Jr., see also previous “Fundamental Reviews on Kinetic Aspects of Analytical Chemistry”, Anal. Chem.

    Google Scholar 

  20. T. C. O’Haver, “The Development of Luminescence Spectrometry as an Analytical Tool,” J. Chem. Ed. 55, 423–428 (1978).

    Article  Google Scholar 

  21. S. Udenfriend, Fluorescence Assay in Biology and Medicine ( Academic Press, New York, 1962 ).

    Google Scholar 

  22. H. Theorell and A. Nygaard, “Kinetics and Equilibria in Flavoprotein Systems, 1. A Fluorescence Recorder and its Application to a Study of the Dissociation of the Old Yellow Enzyme and its Resynthesis from Riboflavin Phosphate and Protein,” Acta. Chem. Scand. 8, 877–888 (1954).

    Article  CAS  Google Scholar 

  23. H. Theorell, A. Nygaard, and R. Bonnichsen, “Kinetics of Alcohol Dehydrogenases, Studied with the Aid of a Fluorescence Recorder,” Acta. Chem. Scand. 8, 1490–1491 (1954).

    Article  CAS  Google Scholar 

  24. O. H. Lowry, N. R. Roberts, and J. I. Kapphahn, “The Fluorometric Measurement of Pyridine Nucleotides,” J. Biol. Chem. 224, 1047–1064 (1957).

    CAS  Google Scholar 

  25. J. D. Winefordner, “Analytical Chemistry: The Journal and the Science, the 1960’s,” Anal. Chem. 50, 1302A - 1306A (1978).

    Article  Google Scholar 

  26. S. R. Crouch, F. J. Holler, P. K. Notz, and P. M. Beckwith, “Automated Stopped-Flow Systems for Fast Reaction-Rate Methods,” Appl. Spectrosc. Rev. 13, 165–259 (1977).

    Article  Google Scholar 

  27. T. O. Tiffany in Modern Fluorescence Spectroscopy, Vol. 2, E. L. Wehry, ed. ( Plenum Press, New York, 1976 ), pp. 1–48.

    Google Scholar 

  28. M. Roth, “Fluorometric Assay of Enzymes,” in Methods of Biochemical Analysis, Vol. 17, D. Glick, ed. ( Interscience, New York, 1969 ), pp. 189–285.

    Chapter  Google Scholar 

  29. G. G. Guilbault, Handbook of Enzymatic Methods of Analysis ( Marcel Dekker, New York, 1976 ).

    Google Scholar 

  30. G. G. Guilbault, Practical Fluorescence ( Marcel Dekker, New York, 1973 ).

    Google Scholar 

  31. G. G. Guilbault, “Use of Enzymes in Analytical Chemistry,” Anal. Chem. 40, 459R - 471R (1968).

    Article  CAS  Google Scholar 

  32. R. L. Wilson and J. D. Ingle, Jr., “Design and Operation of a Fluorometric Reaction Rate Instrument,” Anal. Chem. 49, 1060–1065 (1977).

    Article  CAS  Google Scholar 

  33. R. E. Curry, H. L. Pardue, G. E. Mieling, and R. E. Santini, “Design and Evaluation of a Filter Fluorometer that Incorporates a Photon-Counting Detector,” Clin. Chem. 19, 1259–1264 (1973).

    CAS  Google Scholar 

  34. E. Kohen, C. Kohen, and J.-M. Salmon, “New Methodological Criteria in Rapid Multichannel Microspectrofluorometry,” Mikrochim. Acta (Wien) 1976 II, 195–210 (1976).

    Google Scholar 

  35. L. S. Mandel, T. G. Riddle, and J. C. LaManna, “A Rapid Scanning Spectrophotometer and Fluorometer for In Vivo Monitoring of Steady State and Kinetic Optical Properties of Respiratory Enzymes,” Oxygen Physiol. Funct. Proc. Am. Physiol. Soc. Colloq., 79–89 (1977).

    Google Scholar 

  36. G. M. Ridder and D. W. Margerum, “Simultaneous Kinetic Analysis of Multicomponent Mixtures,” Anal. Chem. 49, 2090–2098 (1977).

    Article  CAS  Google Scholar 

  37. P. W. Carr, “Kinetic and Equilibrium Assays Based on the Effect of Extent of Reaction and the Uncertainty of Rate Parameters,” Anal. Chem. 50, 1602–1607 (1978).

    Article  CAS  Google Scholar 

  38. H. V. Malmstadt, C. J. Delaney, and E. A. Cordos, “Instruments for Rate Determinations,” Anal. Chem. 44, 79A - 89A (1972).

    CAS  Google Scholar 

  39. J. D. Ingle, Jr. and S. R. Crouch, “Theoretical and Experimental Factors Influencing the Accuracy of Analytical Rate Measurements,” Anal. Chem. 43, 697–701 (1971).

    Article  CAS  Google Scholar 

  40. G. E. Mieling and H. L. Pardue, “Kinetic Method that is Insensitive to Variables Affecting Rate Constants,” Anal. Chem. 50, 1611–1618 (1978).

    Article  CAS  Google Scholar 

  41. R. L. Wilson and J. D. Ingle, Jr., “Fluorometric Reaction Rate Method for Determination of Silver,” Anal. Chem. 49, 1066–1070 (1977).

    Article  CAS  Google Scholar 

  42. J. D. Ingle, Jr. and R. L. Wilson, “Difficulties with Determining the Detection Limit with Nonlinear Calibration Curves in Spectrometry,” Anal. Chem. 48, 1641–1642 (1976).

    Article  CAS  Google Scholar 

  43. J. F. Holland, R. E. Teets, and A. Timnick, “A Unique Computer Centered Instrument for Simultaneous Absorbance and Fluorescence Measurements,” Anal. Chem. 45, 145–153 (1973).

    Article  CAS  Google Scholar 

  44. R. J. Hurtubise, “Fluorescence Quenching of Phenolic Antioxidants and Selective Determination of Propyl Gallate,” Anal. Chem. 47, 2457–2458 (1975).

    Article  CAS  Google Scholar 

  45. R. J. Hurtubise, “Selective Fluorescence Quenching and Determination of Phenolic Antioxidant,” Anal. Chem. 48, 2092–2095 (1976).

    Article  CAS  Google Scholar 

  46. I. Landa and J. C. Kremen, “Corrected and Automated Spectrophotofluorimeter Employing a Pyroelectric Detector for Correction,” Anal. Chem. 46, 1694–1701 (1974).

    Article  CAS  Google Scholar 

  47. T. J. Porro, R. E. Anacreon, P. S. Flandreau, and I. S. Fagerson, “Corrected Fluorescence Spectra of Polynuclear Materials and their Principal Applications,” J. Assoc. Off. Anal. Chem. 56, 607–620 (1973).

    CAS  Google Scholar 

  48. Photochemical Research Associates Inc., 45 Meg Drive, London, Ontario, Canada N6E 2V2.

    Google Scholar 

  49. J. J. Aaron, J. E. Villafranca, V. R. White, and J. M. Fitzgerald, “A Quantitative Photo-Chemical-Fluorimetric Method for Measurement of Nonfluorescent Vitamin K,” Appl. Spectrosc. 30, 159–162 (1976).

    Article  CAS  Google Scholar 

  50. H. C. Clarke, “A Photodecomposition Fluorometric Method for the Determination of Riboflavin in Whole Blood,” Int. Z. Vitaminforsch. 39, 182–191 (1969).

    CAS  Google Scholar 

  51. R. L. Wilson and J. D. Ingle, Jr., “Evaluation of Ratemeters: Application to an Improved Fixed-Time Instrument,” Anal. Chim. Acta 83, 203–214 (1976).

    Article  CAS  Google Scholar 

  52. J. E. Davis and J. Pevnick, “Optimization of the Coupled Enzymatic Measurement of Substrate,” Anal. Chem. 51, 529–533 (1979).

    Article  CAS  Google Scholar 

  53. J. E. Davis and B. Renoe, “Optimized Wide-Interval Rate Measurements of Substrate,” Anal. Chem. 51, 526–528 (1979).

    Article  CAS  Google Scholar 

  54. J. G. Atwood and J. L. DiCesare, “Making Enzymatic Methods Optimum for Measuring Compounds with a Kinetic Analyzer,” Clin. Chem. 21, 1263–1269 (1975).

    CAS  Google Scholar 

  55. J. D. Ingle, Jr. and S. R. Crouch, “Signal to Noise Ratio Theory of Fixed-Time Spectrophotometric Reaction Rate Measurements,” Anal. Chem. 45, 333–338 (1973).

    Article  CAS  Google Scholar 

  56. J. D. Ingle, Jr. and S. R. Crouch, “A Critical Comparison of Photon Counting and Direct Current Measurements Techniques for Quantitative Spectrometric Methods,” Anal. Chem. 44, 785 (1972).

    Article  CAS  Google Scholar 

  57. J. D. Winefordner, S. G. Schulman, and T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry ( Wiley, New York, 1972 ).

    Google Scholar 

  58. R. L. Wilson, Design, Development and Optimization of a Fluorometric Reaction Rate Instrument and Method of Analysis for Metal Ions (Ph.D. thesis, Oregon State University, Corvallis, 1976 ).

    Google Scholar 

  59. M. Marti and J. D. Ingle, Jr., unpublished work, Oregon State University, 1979.

    Google Scholar 

  60. V. W. Truesdale and Peter J. Smith, “The Automatic Determination of Iodine or Iodate in Solution by Catalytic Spectrophotometry, with Particular Reference to River Water,” Analyst 100, 111–123 (1975).

    Article  CAS  Google Scholar 

  61. H. B. Mark, Jr., “The Development and Publication of New Methods in Kinetic Analysis,” Talanta 20, 257–266 (1973).

    Article  CAS  Google Scholar 

  62. D. N. Kramer, “Design of Fluorometric Analytical Methods,” Pure Appl. Chem. 48, 65–67 (1976).

    Article  CAS  Google Scholar 

  63. R. L. Wilson and J. D. Ingle, Jr., “Fluorometric Reaction Rate Method for the Determination of Silver,” Anal. Chem. 49, 1066–1070 (1977).

    Article  CAS  Google Scholar 

  64. M. A. Ryan and J. D. Ingle, Jr., “Fluorometric Reaction Rate Method for the Determination of Thiamine,” Anal. Chem. 52, 2177–2184 (1980).

    Article  CAS  Google Scholar 

  65. S. N. Deming and H. L. Pardue, “An Automated Instrument for Fundamental Characterization of Chemical Reactions,” Anal. Chem. 43, 192–200 (1971).

    Article  CAS  Google Scholar 

  66. S. L. Morgan and S. N. Deming, “Simplex Optimization of Analytical Chemical Methods,” Anal. Chem. 46, 1170–1181 (1974).

    Article  CAS  Google Scholar 

  67. M. M. Fishman, “Enzymes in Analytical Chemistry,” Anal. Chem. 52, 185R - 199 (1980);

    Article  CAS  Google Scholar 

  68. M. M. Fishman, see also previous Anal. Chem. review editions.

    Google Scholar 

  69. P. Froehlich, in Modern Fluorescence Spectroscopy, Vol. 2, E. L. Wehry, ed. (Plenum, New York, 1976 ), pp. 49–89.

    Google Scholar 

  70. B. Rietz and G. G. Guilbault, “Fluorometric Assay of Serum Glutamate Oxaloacetate Transaminase, Glutamate Pyruvate Transaminase and a -Hydroxybutyrate Dehydrogenase by Solution and Solid Surface Fluorescent Methods,” Anal. Chim. Acta 77, 191–198 (1975).

    Article  CAS  Google Scholar 

  71. G. G. Guilbault and D. N. Kramer, “Fluorometric Procedure for Measuring the Activity of Dehydrogenases,” Anal. Chem. 37, 1219–1221 (1965).

    Article  CAS  Google Scholar 

  72. G. G. Guilbault, P. Brignac, and M. Juneau, “New Substrates for the Fluorometric Determination of Oxidative Enzymes,” Anal. Chem. 40, 1256–1263 (1968).

    Article  CAS  Google Scholar 

  73. T. J. Jacks and H. W. Kircher, “Fluorometric Assay for the Hydrolytic Activity of Lipase Using Fatty Acyl Esters of 4-Methylumbelliferone,” Anal. Biochem. 21, 279–285 (1967).

    Article  CAS  Google Scholar 

  74. C. M. Himel and L.-M. Chan, in Biochemical Fluorescence: Concepts, Vol. II ( Marcel Dekker, New York, 1975 ), pp. 607–637.

    Google Scholar 

  75. E. Haas, Y. Elkana, and R. C. Kulka, “A Sensitive Fluorometric Assay for a-Chymotrypsin,” Anal. Biochem. 40, 218–226 (1971).

    Article  CAS  Google Scholar 

  76. S. A. Latt, D. S. Auld, and B. L. Vallee, “Fluorescence Determination of Carboxypeptidase A Activity Based on Electronic Energy Transfer,” Anal. Biochem. 50, 56–62 (1972).

    Article  CAS  Google Scholar 

  77. A. Carmel, M. Zur, A. Yaron, and E. Katchalski, “Use of Substrates with Fluorescent Donor and Acceptor Chromophores for the Kinetic Assay of Hydrolases,” FEBS Lett. 30 (1), 11–14 (1973).

    Article  CAS  Google Scholar 

  78. R. F. Chen, “Enzyme Assay by Fluorescence Quenching Release,” Anal. Lett. 10, 787–795 (1977).

    Article  CAS  Google Scholar 

  79. S. W. Kiang, J. W. Kuan, and G. G. Guilbault, “Semi-Solid Surface Fluorometric Analysis of Glucose,” Clin. Chem. 21, 1799–1801 (1975).

    CAS  Google Scholar 

  80. J. W. Kuan, H. K. Y. Lau, and G. G. Guilbault, “Enzymatic Determination of Serum Urea on the Surface of Silicone-Rubber Pads,” Clin. Chem. 21, 67–70 (1975).

    CAS  Google Scholar 

  81. J. W. Kuan, S. S. Kuan, and G. G. Guilbault, “The Immobilized-Enzyme Stirrer,” Anal. Chim. Acta 100, 229–233 (1978).

    Article  CAS  Google Scholar 

  82. G. G. Guilbault and D. N. Kramer, “Fluorometric System Employing Immobilized Cholinesterase for Assaying Anticholinesterase Compounds,” Anal. Chem. 37, 16751680 (1965).

    Google Scholar 

  83. V. L. Biddle and E. L. Wehry, “Fluorometric Determination of Manganese(II) via Catalyzed Enzymatic Oxidation of 2,3-Diketoglulonate,” Anal. Chem. 50, 867–870 (1978).

    Article  CAS  Google Scholar 

  84. S. R. Goode and R. J. Matthews, “Enzyme-Catalyzed Reaction-Rate Method for the Determination of Arsenic in Water,” Anal. Chem. 50, 1608–1610 (1978).

    Article  CAS  Google Scholar 

  85. K. B. Yatsimirskii and L. P. Tikhonova, in Essays on Analytical Chemistry, E. Wänninen, ed. ( Pergamon, New York, 1977 ), pp. 529–536.

    Google Scholar 

  86. S. Takanashi and Z. Tamua, “Fluorometric Determination of Cyanide by the Reaction with Pyridoxal,” Chem. Pharm. Bull. 18, 1633–1635 (1970).

    Article  CAS  Google Scholar 

  87. E. B. Cousins, “A Fluorometric Microdetermination of Selenium in Biological Materials,” Aust. J. Exp. Biol. Med. Sci. 38, 11–16 (1960).

    Article  CAS  Google Scholar 

  88. E. A. Bozhevol’nov and S. U. Kriengol’d, “Luminescent Catalytic Reaction for Cobalt Determination,” Tr. Vses. Nach.-Issled. Inst. Khim. Reaktivov Osobo Christ. Khim. Veshchestv, No. 26, 204–211 (1964) (in Russian); abstracted in Chem. Abstr. 66, 82087 (1967).

    Google Scholar 

  89. A. T. Tashkhodzhaev, L. E. Zel’tser, Sh. T. Talipov, and Kh. Khikmatov, “Luminescence Reaction of Salicylal-H-acid with Hydrogen Peroxide Catalyzed by Chromium,” Zh. Anâl. Khim. 31, 485–489 (1976).

    CAS  Google Scholar 

  90. D. P. Shcherbov and R. N. Plotnikova, “Luminescence Analysis of Inorganic Substances (Survey),” Zavod. Lab. 42, 1429–1449 (1976).

    CAS  Google Scholar 

  91. L. E. Zel’tser, Z. T. Maksimycheva, and Sh. T. Talipov, “Luminescent Catalytic Reaction for Determining Copper,” Dokl. Akad. Nauk. Uzb. SSR 26 30–31 (1969) in Russian;

    Google Scholar 

  92. L. E. Zel’tser, Z. T. Maksimycheva, and Sh. T. Talipov, abstracted in Chem. Abstr. 73, 83532 (1970).

    Google Scholar 

  93. A. A. Obraztsov and V. G. Bocharova, “Determination of Trace Amounts of Iron and Copper in Especially Pure Water,” Tr. Voronezh. Univ. 82(2), 182–184 (1971) (in Russian);

    Google Scholar 

  94. A. A. Obraztsov and V. G. Bocharova, abstracted in Chem. Abstr. 77, 9476 (1972).

    Google Scholar 

  95. E. A. Bozhevol’nov, S. U. Kreingol’d, and L. I. Sosenkova, “Comparative Study of Three Reagents for the Kinetic Determination of Copper Traces,” Tr. Vses. Nach.-Issled. Inst. Khim. Reaktivov Osobo Christ. Khim. Veshchestv.,No. 30, 176–185 (1967) (in Russian);

    Google Scholar 

  96. E. A. Bozhevol’nov, S. U. Kreingol’d, and L. I. Sosenkova, abstracted in Chem. Abstr. 69, 73657 (1968).

    Google Scholar 

  97. M. Laanmaa, M. L. Allsalu, and H. Kokk, “Determination of Submicrogram Quantities of Iron in Calcium Sulfide and in the Initial Synthesis Products,” Tartu Riikliku Ulik. Toim., No. 219, 199–206 (1968) (in Russian); abstracted in Chem. Abstr. 71, 77012 (1969).

    Google Scholar 

  98. E. A. Morgen, N. A. Vlasov, and L. A. Kozhemyakina, “Kinetic Determination of Microamounts of Manganese for the Attenuation of the Beryllium-Morin Complex,” Zh. Anal. Khim. 27, 2064–2067 (1972).

    CAS  Google Scholar 

  99. J. Bognar and O. Jellinek, “Catalytic Determination of Vanadium Traces with Aid of the Landolt System,” Mikrochim Acta 5, 1013–1024 (1968).

    Article  Google Scholar 

  100. R. L. Wilson and J. D. Ingle, Jr., “A Kinetic Fluorometric Determination of Aluminum,” Anal. Chim. Acta 92, 417–421 (1977).

    Article  CAS  Google Scholar 

  101. G. G. Guilbault and G. J. Lubrano, “A Fluorometric Kinetic Method for the Determination of Organophosphorus and Organocarbonyl Compounds,” Anal. Chim. Acta 43, 253–261 (1968).

    Article  CAS  Google Scholar 

  102. H. Steinhart, “Determination of Tryptophan in Foods and Feedstuff with a Kinetic Method,” Anal. Chem. 51, 1012–1016 (1979).

    Article  CAS  Google Scholar 

  103. M. A. Ryan, unpublished work, Oregon State University, 1978, 1979.

    Google Scholar 

  104. Official Methods of the Association of Official Analytical Chemists, 11th ed., W. Horwitz, ed. (Association of Official Analytical Chemists, Washington, D.C., 1970).

    Google Scholar 

  105. M. A. Ryan and J. D. Ingle, Jr., “Fluorometric Reaction Rate Method for the Determination of Thiamine,” presented at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, paper no. 598, Cleveland, Ohio (March 1979).

    Google Scholar 

  106. S. R. Crouch, “Applications of Computer Circuitry and Techniques to Kinetic Methods Analysis,” Comput. Chem. Instrum. 3, 107–207 (1973).

    CAS  Google Scholar 

  107. R. E. Santini, M. J. Milano, and H. L. Pardue, “Rapid Scanning Spectroscopy: Prelude to a New Era in Analytical Spectroscopy,” Anal. Chem. 45, 915A - 927A (1973).

    CAS  Google Scholar 

  108. G. M. Ridder and D. W. Margerum, “Simultaneous Kinetic and Spectral Analysis with a Vidicon Rapid-Scanning Stopped-Flow Spectrometer,” Anal. Chem. 49, 2098–2108 (1977).

    Article  CAS  Google Scholar 

  109. Y. Talmi, D.C. Baker, J. R. Jadamec, and W. A. Saner, “Fluorescence Spectrometry with Optoelectronic Image Detectors,” Anal. Chem. 50, 936A - 952A (1978).

    Article  CAS  Google Scholar 

  110. M. A. Ryan and J. D. Ingle, Jr., “Design and Application of an Intensified Diode Array System to Luminescence Measurements,” presented at the 1979 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, paper no. 512, Cleveland, Ohio (March 1979 ).

    Google Scholar 

  111. M. A. Ryan, R. J. Miller, and J. D. Ingle, Jr., “Intensified Diode Array Detector for Molecular Fluorescence and Chemiluminescence Measurements,” Anal. Chem. 50, 1772–1777 (1978).

    Article  CAS  Google Scholar 

  112. M. A. Ryan and J. D. Ingle, Jr., “Improved Instrumentation in the Application of Fluorescence Reaction Rate Methods,” presented at the 1980 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, paper no. 725, Atlantic City, New Jersey (March 1980 ).

    Google Scholar 

  113. J. D. Ingle, Jr., D. Marino, and L. Dewald, “Application of the KIM-1 Microcomputer,” presented at the 1979 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, paper no. 321, Cleveland, Ohio (March 1979 ).

    Google Scholar 

  114. S. W. Kiang, J. W. Kuan, S. S. Kuan, and G. G. Guilbault, “Measurement of Glucose in Plasma, with Use of Immobilized Glucose Oxidase and Peroxidase,” Clin. Chem. 22, 1378–1382 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Ingle, J.D., Ryan, M.A. (1981). Reaction Rate Methods in Fluorescence Analysis. In: Wehry, E.L. (eds) Modern Fluorescence Spectroscopy. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1092-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1092-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1094-5

  • Online ISBN: 978-1-4684-1092-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics