Skip to main content

Charge Movement and Contraction Threshold in Skeletal Muscle Fibres

  • Chapter
  • 86 Accesses

Abstract

Currents due to the movement of charged particles in the membrane thickness have been shown to exist in skeletal muscle fibers by many authors (Schneider & Chandler, 1973; Chandler, Rakowski & Schneider, 1976a; Adrian & Aimers, 1976a). The voltage range in which this charge movement appears suggests that it may have important physiological role. In fact in excitable cells the membrane potential controls many physiological functions. In particular, in skeletal muscle fibres not only the conductances of K+ and Na+ ions but also the activation of mechanical contraction is under the control of the electric field existing across the cell membrane (Hodgkin & Horowicz, I960).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.H. & Aimers, W., 1976a. The voltage dependence of membrane capacity. J. Physiol. 254:317–338.

    Google Scholar 

  2. Adrian, R.H. & Aimers, W., 1976b. Charge movement in the membrane of striated muscle. J. Physiol. 254:339–360.

    Google Scholar 

  3. Adrian, R.H., Chandler, W.K. & Rakowski, R.F., 1976. Charge movement and mechanical repriming in striated muscle. J. Physiol. 254:361–388.

    Google Scholar 

  4. Adrian, R.H. & Peres, A., 1977. A gating signal for the potassium channel?. Nature Lond. 267:800–804.

    Article  ADS  Google Scholar 

  5. Adrian, R.H. & Peres, A., 1979. Charge movement and membrane capacity in frog muscle. J. Physiol. 289:83–97.

    Google Scholar 

  6. Chandler, W.K., Rakowski, R.F. & Schneider, M.F., 1976. A non linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. 254:245–283.

    Google Scholar 

  7. Constantin, L.L., 1974. Contractile activation in frog skeletal muscle. J. gen. Physiol. 63:657–674.

    Article  Google Scholar 

  8. Hodgkin, A.L. & Horowicz, P., 1960. Potassium contractures in single muscle fibres. J. Physiol. 153:386–403.

    Google Scholar 

  9. Kovacs, L. & Schneider, M.F., 1978. Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres. J. Physiol. 277:483–506.

    Google Scholar 

  10. Schneider, M.F. & Chandler, W.K., 1973. Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. ’Nature Lond. 242:224–226.

    Article  ADS  Google Scholar 

  11. Stanfield, P.R., 1970. The effect of tetraethylammonium ion on the delayed currents of frog skeletal muscle. J. Physiol. 209:209–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Peres, A., Ferroni, A. (1980). Charge Movement and Contraction Threshold in Skeletal Muscle Fibres. In: Borsellino, A., Omodeo, P., Strom, R., Vecli, A., Wanke, E. (eds) Developments in Biophysical Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1077-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1077-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1079-2

  • Online ISBN: 978-1-4684-1077-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics