Skip to main content

Internal pH and K+ Channel Rate Constants

  • Chapter
Developments in Biophysical Research
  • 85 Accesses

Abstract

The effects of changing the proton content of solutions bathing excitable membranes has been the subject of many reports in the jpast. (1-7). Two main effects were commonly observed although they differed quantitatively upon changing the nerve preparation: a) a shift on the voltage axis of the parameters characterizing nerve excitability (similar to the action of divalent ions (8)), b) a variation of the steady-state maximum conductance of the open channels selective for sodium and potassium ions. A third type of effects concerns phenomena such as the voltage-dependent block of Na+-channels observed by Woodhull (9) in the node of Ranvier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HILLE, B. 1968. Changes and the nerve surface. Divalent ions and pH J. Gen. Physiol. 51:221.

    Google Scholar 

  2. MOZHAYEVA, G.N., and A.P. NAUMOV 1970. Effect of surface charge on the steady-state potassium conductance of nodal membrane. Nature (Lond.) 228:164.

    Article  ADS  Google Scholar 

  3. SHRAGER, P. 1974. Ionic conductance changes in voltage clamped crayfish axons at low pH. J. Gen. Physiol. 64:666.

    Article  Google Scholar 

  4. SCHAUF, C.L. and F.A. DAVIS 1976. Sensitivity of the sodium and potassium channels of Myxicola giant axons to changes in external pH; J. Gen. Physiol. 67: 185.

    Article  Google Scholar 

  5. CARBONE, E., R. FIORAVANTI, G. PRESTIPINO, and E. WANKE 1978. Action of extracellular pH on Na+ and K+ membrane currents in the giant axon of Loligo Vulgaris. J. Membr. Biol. 43:295.

    Article  Google Scholar 

  6. EHRENSTEIN, G., and H. M. FISHMAN 1971. Evidence against hydrogen-calcium competition model for activation of electrically excitable membranes. Nature (Lond.) 233:16.

    Google Scholar 

  7. BRODWICK, M.S. and D.C. EATON 1978. Sodium channel inactivation in squid axon is removed by high internal pH or tyrosine-specifi reagents. Science (Wash.D.C.) 200:1494.

    Article  ADS  Google Scholar 

  8. FRANKENHAEUSER, B., A. L. HODGKIN 1957. The action of calcium on the electrical properties of squid axons. J. Physiol. London 137:217–43.

    Google Scholar 

  9. WOODHULL, A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687–708.

    Article  Google Scholar 

  10. WANKE, E., E. CARBONE and P.L. TESTA 1979. K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophys.J. 26:319.

    Article  Google Scholar 

  11. TSIEN, R.W., and D. NOBLE 1969. A transition state theory approach to the kinetics of conductance changes in excitable membranes. J. Membr. Biol. 1:248.

    Article  Google Scholar 

  12. HILLE, B., A.M. WOODHULL, B.I. SHAPIRO 1975. Negative surface charg. near sodium channels of nerve: Divalent ions, monovalent ions, and pH. Philos. Trans. Soc. 270:301.

    Article  Google Scholar 

  13. CHANDLER, W.K., and H. MEVES 1965. Voltage clamp experiments on internally perfused giant axons. J. Physiol. London 180:788–820

    Google Scholar 

  14. MCLAUGHLIN, S.G.A., G. SZABO and G. EISENMAN 1971. Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58:667.

    Article  Google Scholar 

  15. SCHAUF, C.L. 1975- The interactions of calcium with Myxicola giant axons and a description in terms of a simple surface charge model. J. Physiol. 248:613.

    Google Scholar 

  16. TRAUBLE, H., and E. HAUSJQRG 1974. Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc.Nat.Acad.Sci. USA, 71:214.

    Article  ADS  Google Scholar 

  17. WATTS, A., K. HARLOS, W. MASCHKE and D. MARCH 1978. Control of the structure and fluidity of phospho-tidyl-glycerol bilayers by pH titration. Biochim. Biophys. Acta 510:63.

    Article  Google Scholar 

  18. VERKLEIJ, A.J., B.DE KRUYFF, P.H.J.T. VERVERGAERT, J.F. TOCANNE and L.L.M. VAN DEENEN 1974. The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphotidylglycerol. Bioch.Bioph.Acta, 339:432.

    Article  Google Scholar 

  19. BEZANILLA, F. and C.M. ARMSTRONG 1977. Inactivation of sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70: 549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Testa, P.L., Carbone, E., Wanke, E. (1980). Internal pH and K+ Channel Rate Constants. In: Borsellino, A., Omodeo, P., Strom, R., Vecli, A., Wanke, E. (eds) Developments in Biophysical Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1077-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1077-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1079-2

  • Online ISBN: 978-1-4684-1077-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics