Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 47))

  • 123 Accesses

Abstract

Rudolf Mossbauer discovered in 1957 that gamma radiation can be emitted and absorbed by nuclei in solid matter without imparting recoil energy to the individual emitting nucleus and without Doppler broadening of the gamma line. At an early stage he gave a theory of the fraction of “recoilless” emission based on considerations of Lamb about clastic neutron scattering in solids.1) In Chapter 6 a classical approach is used to derive formulas for the recoilless fraction of gamma emission, f(T), as a function of temperature. Here, only the general result is given:

$${\text{f}}({\text{T}}) = {{{\text{e}}}^{{{\text{ - }}{{{\text{k}}}^{{\text{2}}}}\left\langle {{{x}^{2}}} \right\rangle T}}}, $$
((1))

where k = 2π/λ is the wave number of the gamma ray and the <X2>T component of the mean square vibration amplitude of the emitting (or absorbing) nucleus in the direction of the gamma ray. Eq. (1) is valid in the harmonic approximation of lattice vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Mossbauer, Z. Physik 15,1 (1958) 124.

    Article  ADS  Google Scholar 

  2. S. Margulies and J.R. Ehrman, Nucl. Instr. & Meth. 12, (1961) 131.

    Article  ADS  Google Scholar 

  3. D.A. O’Connor, Nucl. Instr. & Meth. 21, (1963) 318.

    Article  ADS  Google Scholar 

  4. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1960).

    Google Scholar 

  5. D.S. Ling and D.R. Falkoff, Phys. Rev. 76, (1949) 1639.

    Article  ADS  MATH  Google Scholar 

  6. E. Recknagel, these Proceedings, Ch.p. 85

    Google Scholar 

  7. W. Kündig, Nucl. Instr. & Meth. 48, (1967) 219.

    Article  ADS  Google Scholar 

  8. H.P. Wit, G. Hoeksema, L. Niesen and H. de Waard, Nucl. Instr. & Meth. 141, (1977) 515.

    Article  ADS  Google Scholar 

  9. H. de Waard, Rev. Sci. Instrum. 36, (1965) 1728.

    Article  ADS  Google Scholar 

  10. H.P. Wit, Rev. Sci. Instrum. 46, (1975) 927.

    Article  ADS  Google Scholar 

  11. J.G. Cosgrove and R.L. Collins, Nuclear Instruments and Methods 95, (1971) 269.

    Article  ADS  Google Scholar 

  12. S.R. Reintsema, S.A. Drentje, J. Stavast and H. de Waard, Hyperfine Interactions 2 (1976) 358.

    Article  ADS  Google Scholar 

  13. U. Baverstam, C. Böhm, T. Ekdahl, D. Liljequist and B. Ringstrom, Mossbauer Effect Methodology Vol. 9 (Ed. I.J. Gruverman, C.W. Seidel and D.J. Dieterly, Plenum Press, New York 1974), p. 259.

    Google Scholar 

  14. H. de Waard and S.A. Drentje, Physics Letters M 20 (1966) 38.

    ADS  Google Scholar 

  15. H. de Waard, R.L. Cohen, S.R. Reintsema and S.A. Drentje, Phys. Rev. B10 (1974) 3760.

    ADS  Google Scholar 

  16. H. de Waard, Physica Scripta 11 (1975) 157 and references given therein.

    Article  ADS  Google Scholar 

  17. S.R. Reintsema, S.A. Drentje, P. Schurer and H. de Waard, Radiation Effects U 24 (1975) 145.

    Article  Google Scholar 

  18. S. Bukshpan, W. Hilbrants, S.R. Reintsema and H. de Waard, Hyperfine Interactions 2 (1976) 356.

    Article  ADS  Google Scholar 

  19. S.R. Reintsema, H. de Waard and S.A. Drentje, Hyperfine Interactions 2 (1976) 367.

    Article  ADS  Google Scholar 

  20. S.R. Reintsema, Mossbauer Studies of Implantation Damage in Iron and Nickel, Thesis, Groningen, 1976.

    Google Scholar 

  21. S.A. Drentje and J. Ekster, J. Appl. Phys. 45 (1974) 3242.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

de Waard, H. (1980). Mössbauer Spectroscopy. In: Perez, A., Coussement, R. (eds) Site Characterization and Aggregation of Implanted Atoms in Materials. NATO Advanced Study Institutes Series, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1015-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1015-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1017-4

  • Online ISBN: 978-1-4684-1015-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics