Skip to main content

In Vitro Translation of Picornavirus RNA

  • Chapter
The Molecular Biology of Picornaviruses

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 23))

Abstract

Although studies of picornavirus proteins and their biosynthesis in vivo have been conducted with approximately equal intensity for both poliovirus and encephalomyocarditis (EMC) virus (l), the majority of in vitro translation studies have been performed using the mouse virus RNA. Beginning in the early 1970’s, several different laboratories reported the synthesis of virus-specific proteins in preincubated cell-free systems derived from Krebs II, Ehrlich or mouse plasmacytoma ascites cells, or from cultured L cells (2–13). In general, a variety of different sized polypeptides, including those with molecular weights over 100,000 daltons, were produced, but, unlike the various viral proteins synthesized in vivo, the in vitro products appear to arise from premature termination of translation rather than from proteolytic cleavage of a complete translate. Complete translation of the entire viral RNA molecule may occur in rare instances (5), but most of the polypeptides synthesized in vitro contain amino acid sequences derived from a common amino terminus, and the majority of the products contain the tryptic (or cyanogen bromide) peptide fragments which are present in the virus capsid proteins. These proteins are known to be encoded by nucleotide sequences within the 5′ half of the viral RNA (l). A diagram of the overlap in amino sequences of the major translation products (I-VI) of EMC virus RNA by a Krebs or Ehrlich ascites cell-free system is shown below. The data are from Hunt (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EUEGKEET, R.R. On the structxire and morphogenesis of picornaviruses. In Comprehensive Tirology. Fraenkel-Conrat, H. and Wagner, R.R. eds., (1976), Vol.6, pp.131–213, Plenum Press, New York.

    Google Scholar 

  2. KEEE, I.M. and MAETIN, E.M. Virus protein synthesis in animal cell-free systems: Nature of the products synthesized in response to MA of EMC virus. J. Virol. (1971), 7, 458–447

    Google Scholar 

  3. DOBOS, P., KERR, I.M. and MARTIN, E.M. Synthesis of capsid and non-capsid viral proteins in response to EMG virus MA in animal cell-free systems. J. Virol. (1971), 8, 491–499.

    PubMed  CAS  Google Scholar 

  4. KERR, I.M., BEOWN, R.M. and TOYELL, D.R. Gharacterization of the polypeptides formed in response to EMC virus MA in a cell-free system from mouse ascites tumor cells. J. Virol. (1972), 10, 73–81.

    PubMed  CAS  Google Scholar 

  5. ESTEBAN, M. and KERR, I.M. The synthesis of EMC virus polypeptides in infected L-cells and cell-free systems. Eur. J. Biochem. (1974), 45, 567–576.

    Article  PubMed  CAS  Google Scholar 

  6. MATHEWS, M.B. and KORNER, A. Mammalian cell-free protein synthesis directed by viral RNA. Eur. J. Biochem. (1970), 17, 328–338.

    Article  PubMed  CAS  Google Scholar 

  7. SMITH, A.E., MARGKER, K.A. and MATHEWS, M.B. Translation of RNA from EMC virus in a maimnalian cell-free system. Nature (London) (1970), 225, 184–187.

    Article  CAS  Google Scholar 

  8. MATHEWS, M.B. and OSBORN, M. The rate of polypeptide chain elongation in a cell-free system from Krebs II ascites cells. Biochem. Biophys. Acta. (1974), 340 147–152.

    Article  PubMed  CAS  Google Scholar 

  9. BOIME, I., AVIV, H. and LEBER, P. Protein synthesis directed by EMC virus RNA. II. The in vitro synthesis of high molecular weight proteins and elements of the viral capsid. Biochem. Biophys. Res. Comm. (1971), 45, 788–795.

    Article  PubMed  CAS  Google Scholar 

  10. BOIME, I. and LEBER, P. Protein synthesis directed by EMC virus RNA. III.Biscrete polypeptides translated from a monocistronic messenger in vitro. Arch. Biochem. Biophys. (1972), 153, 706–713.

    Article  PubMed  CAS  Google Scholar 

  11. EGGEN, K.L. and SHATKIN, A.J. In vitro translation of cardiovirus ribonucleic acid by mammalian cell-free extracts. J. Virol. (1972), 9, 636–645.

    PubMed  CAS  Google Scholar 

  12. LAWRENCE, C. and THACH, R.E. Encephalomyocarditis virus infection of mouse plasmacytoma cells. I. Inhibition of cellular protein synthesis. J. Virol. (1974), 14, 598–610.

    PubMed  CAS  Google Scholar 

  13. HUNT, L.A. In vitro translation of EMC viral RNA: Synthesis of capsid precursor-like polypeptides. Virology (1976), 70, 484–492.

    Article  PubMed  CAS  Google Scholar 

  14. HUNT, L.A. Mechanism of premature polypeptide termination in a mouse ascites cell-free system programmed by EMC RNA. J. Virol. (1976), 18, 788–792.

    PubMed  CAS  Google Scholar 

  15. HACKETT, P.B., EGBERTS, E. and TRAUB, P. Translation of ascites and mengovirus RNA in fractionated cell-free systems from iminfected and mengovirus-infected Ehrlich ascites tumor cells. Eur. J. Biochem. (1978), 83, 341–352.

    Article  PubMed  CAS  Google Scholar 

  16. LAWRENCE, C. and THACH, R.E. Identification of a viral protein involved in post-translational maturation of the EMC virus capsid precursor. J. Virol. (1975), 15, 918–928.

    PubMed  CAS  Google Scholar 

  17. PELHAM, H.R.B. Translation of EMC virus RNA in vitro yields an active proteolytic processing enzyme. Eur. J. Biochem. (1978), 85, 457–462.

    Article  PubMed  CAS  Google Scholar 

  18. PELHAM, H.R.B. and JACKSON, R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. (1978), 85, 457–462.

    Article  PubMed  CAS  Google Scholar 

  19. SYITKIN, Y.Y., GINEVSKAYA, V.A., UGAROVA, T.Y. and AGOL, V.I. A cell-free model of the EMC virus-induced inhibition of host cell protein synthesis. Virology (1978), 87, 199–205.

    Article  Google Scholar 

  20. LEYINTOW, L. The reproduction of picornaviruses. In Comprehensive Virology. Praenkel-Conrat, H. and Wagner, R.R. eds. (1974), Vol.2, pp.109–169, Plenum Press, New York.

    Google Scholar 

  21. ROBERTS, B.E. and PATERSON, B.M. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S in a cell-free system from commercial wheat germ. Proc. Nat. Acad. Sci. U.S.A. (1973), 70. 2330–2334.

    Article  CAS  Google Scholar 

  22. EHRENFELD, E. and LUND, H. Untranslated vesicular stomatitis virus messenger RNA after poliovirus infection. Virology (1977), 80, 279–308.

    Article  Google Scholar 

  23. LODISH, H.F. and ROSE, J.K. Relative importance of 7-methyl guanosine in ribosome binding and translation of VSV mRNA in wheat germ and reticulocyte cell-free systems. J. Biol. Ghem., (1977), 252, 1181–1188.

    CAS  Google Scholar 

  24. LEE, Y.F., NOMOTO, A., DETJEN, B.M. and WIMMER, E. A protein covalently linked to poliovirus genome RNA. Proc. Nat. Acad. Sci. U.S.A. (1977), 74, 59–65.

    CAS  Google Scholar 

  25. FLANEGAN, J.B., PETTERSSON, R.F., AMBROS, V., HEWLETT, M. and BALTIMORE, D. Covalent linkage of a protein to a defined nucleotide sequence at the 5’ terminus of virion and replicative intermediate RNA of poliovirus. Proc. Nat. Acad. Sci. U.S.A., 74, 961–965.

    Google Scholar 

  26. VILLA-KOMAROPP, L., GUTTMAN, N., BALTIMORE, D. and LODISH, H.P. Complete translation of poliovirus RNA in a exikaryotic cell-free system. Proc. Nat. Acad. Sci. U.S.A. (1975), 72, 4157–4161.

    Article  Google Scholar 

  27. ROSE, J.K., TRASCHEL, H., LEONG, K. and BALTIMORE, D. Inhibition of translation by poliovirus: Inactivation of a specific initiation factor. Proc. Nat. Acad. Sci. U.S.A. (1978), 75, 2732–2736.

    Article  CAS  Google Scholar 

  28. SHAPRITZ, D.A., PADILLA, M., GANAANI, D., GRONER, Y., WEINSTEIN, J.A., BAR-JOSEPH, M. and MERRICK, W.C. Initiation factor eIP-4B-dependent recognition and translation of capped versus uncapped eukaryotic mRNA. J. Biol. Chem. (1978) in press.

    Google Scholar 

  29. PERNANDE-ZMDNOZ, R. and DARNELL, J.E. Structural difference between the 5’ terminus of viral and cellular mRNA in poliovirus-infected cells: Possible basis for the inhibition of host protein synthesis. J. Virol. (1976), 18, 719–726.

    Google Scholar 

  30. HEWLETT, M.J., ROSE, J.K. and BALTIMORE, D. 5’ terminal structure of poliovirus polyribosomal RNA is pUp. Proc. Nat. Acad. Sci. U.S.A. (1976), 73, 327–330.

    Article  CAS  Google Scholar 

  31. NOMOTO, A., LEE, Y.F. and WIMMER, E. The 5’ end of poliovirus mRNA is not capped with m7G(5’)ppp(5’)Np. Proc. Nat. Acad. Sci. U.S.A. (1976), 73, 375–380.

    Article  CAS  Google Scholar 

  32. CELMA, M.L. and EHRENFELD, E. Effect of poliovirus double-stranded RNA on viral and host cell protein synthesis. Proc. Nat. Acad. Sci. U.S.A. (1974), 74, 2440–2444.

    Article  Google Scholar 

  33. KAUPMACT, Y., GOLDSTEIN, E. and PENMAN, S. Poliovirus-induced inhibition of polsrpeptide initiation to vitro on native polyribosomes. Proc. Nat. Acad. Sci. U.S.A. (1976), 73, 1834–1838.

    Article  Google Scholar 

  34. HELENTJARIS, T. and EHRENPELD, E. Control of protein synthesis in extracts from poliovirus-infected cells. J. Virol. (1978), 26, 510–521.

    PubMed  CAS  Google Scholar 

  35. HACKETT, P.B., EGBERTS, E. and TRAUB, P. Selective translation of mengovims RNA over host mRNA in homologous fractionated, cell-free translation systems from Ehrlich ascites tumor cells, Eur. J. of Biochem. (1978), 83, 555–561.

    Google Scholar 

  36. OBERG, B.R. and SHATKIN, A.J. Initiation of picornavirus protein synthesis in ascites cell extracts. Proc. Nat. Acad. Sci. U.S.A. (1972), 69, 3589–5595.

    Article  CAS  Google Scholar 

  37. SMITH, A.E. The initiation of protein synthesis directed by the RNA from encephalomyocarditis virus. Eur. J. Biochem. (1973), 33, 301–313.

    Article  PubMed  CAS  Google Scholar 

  38. CELMA, M.L. and EHRENPELD, E. Translation of poliovirus RNA in vitro: Detection of two different initiation sites. J. Mol. Biol. (1975), 98, 761–780.

    Article  PubMed  CAS  Google Scholar 

  39. TERSHACZ, D.R, Effect of hypertonic medium on protein synthesis of Mahoney and LSc poliovirus. J. Virol. (1976), 20, 597–603.

    Google Scholar 

  40. NUSS, D.L., OPPEEMAN, H. and KOCH, G. Selective blockage of initiation of host protein synthesis in RNA virus-infected cells. Proc. Nat. Acad. Sci. U.S.A. (1975), 72, 1258–1262.

    Article  CAS  Google Scholar 

  41. JENSE, H., KNAUERT, P. and EHRENFELD, E. Two initiation sites for translation of poliovirus RNA in vitro: Comparison of LSc and Mahoney

    Google Scholar 

  42. COLE, C.N., SMOLER, D., WIMMER, E. and BALTIMORE, D. Defective interfering particles of poliovirus. I. Isolation and physical properties. J. Virol. (1971), 7, 478–485.

    PubMed  CAS  Google Scholar 

  43. COLE, C.N. and BALTIMORE, D. Defective interfering particles of poliovirus. II. Nature of the defect. J. Mol. Biol. (1973), 76, 323–343.

    Article  Google Scholar 

  44. JACOBSON, M.F. and BALTIMORE, D. Morphogenesis of poliovirus. I. Association of viral RNA with coat protein. J. Mol. Biol. (1968), 33, 369–378.

    Article  PubMed  CAS  Google Scholar 

  45. BUTTERWORTH, B.E., HALL, L., STOLTZFUS, C.M. and RUECKERT, R.R. Virus-specific proteins synthesized in encephalomyocarditis virus-infected HeLa cells. Proc. Nat. Acad. Sci. U.S.A. (1971), 68, 3083–3087.

    Article  CAS  Google Scholar 

  46. LUCAS-LENARD, J. Cleavage of mengovirus polyproteins in vivo. J. Virol. (1974), 14 261–269.

    PubMed  CAS  Google Scholar 

  47. PAUCHA, E. and COLTER, J.S. Evidence for control of translation of the viral genome during replication of mengovirus and poliovirus. Virology (1975), 67, 300–305.

    Article  PubMed  CAS  Google Scholar 

  48. HELENTJARIS, T. and EHRENFELD, E. Inhibition of host cell protein synthesis by UV-inactivated poliovirus. J. Virol. (1977), 21, 259–267.

    PubMed  CAS  Google Scholar 

  49. LUNDQUIST, R., EHRENFELD, E. and MAIZEL, J.V. Isolation of a viral polypeptide associated with poliovirus RNA polymerase. Proc. Nat. Acad. Sci. U.S.A. (1974), 71, 4773–4777.

    Article  CAS  Google Scholar 

  50. LUNDQUIST, R. and MAIZEL, J.V. In vivo regulation of the poliovirus RNA polymerase. Virology (1978), 89, 484–493.

    Article  PubMed  CAS  Google Scholar 

  51. COLE, C.N. and BALTIMORE, D. Defective interfering particles of poliovirus. IV. Mechanisms of enrichment, J. Virol. (1973), 12, 1414–1426.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Ehrenfeld, E. (1979). In Vitro Translation of Picornavirus RNA. In: Pérez-Bercoff, R. (eds) The Molecular Biology of Picornaviruses. NATO Advanced Study Institutes Series, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1000-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1000-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1002-0

  • Online ISBN: 978-1-4684-1000-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics