Advertisement

Viral Vaccines under Development: A Third Generation

  • June E. Osborn
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 118)

Abstract

These are exciting times in virology, immunology and molecular biology, and there is a brisk pace of advance in the basic sciences which provide tools for vaccine development. Additionally, the brilliant success of vaccines created in the fifties and sixties has spawned a host of attempts to apply active immunization principles to the prevention of numerous viral diseases which still evade efforts at control. Partial reviews of current vaccine candidates have appeared in profusion in recent months, and so I have modified my initial purpose for this presentation. Rather than attempting a compendious “state of the art” effort concerning the candidate vaccines themselves, my aim here will be twofold. First, I wish to highlight some of the recent scientific advances which can and/or should be elements in rational vaccine development. Second, I will assess several of the current candidate vaccines in the context of new knowledge with the goal of identifying factors that constitute limits to their further improvement. I should in good conscience confess at the outset that my attention to cell substrates per se will be somewhat peripheral except as I perceive them to be the central factor which limits progress in a given context.

Keywords

Herpes Simplex Respiratory Syncytial Virus Herpes Simplex Type Vaccine Development Human Cytomegalovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Meyer, H.M. Jr., H.E. Hopps, P.D. Parkman, et al. Control of measles and rubella through use of attenuated vaccines. Amer. J. Clin. Path. 70:128. 1978.Google Scholar
  2. 2.
    Madoff, M.A., Gleckman, R.A. Immunizations: where the money should be. J. Inf. Dis.133:230. 1976.Google Scholar
  3. 3.
    Sabin, A.B. Overview and horizons in prevention of some human infectious diseases by vaccination. Amer. J. Clin. Path. 70: 114. 1978.Google Scholar
  4. 4.
    Melnick, J.L. Viral vaccines: new problems and prospects. Hospital Practice, p. 104, July 1978.Google Scholar
  5. 5.
    Protection of human subjects: research involving children. Federal Register 43 31786, 1978.Google Scholar
  6. 6.
    Hofmann, F. The growing federal presence in human investigative studies. Fed. Proc. 36:133. 1977.PubMedGoogle Scholar
  7. 7.
    Robbins, F.C. Demand for human trials in biological research. Bull. W.H.O. 55:73. 1977.Google Scholar
  8. 8.
    Jonsen, A. Research involving children: recommendations of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. Pediatrics. 62:131. 1978.PubMedGoogle Scholar
  9. 9.
    Holden, C. Animal rights advocate urges new deal. Science. 201:35. 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Wade, N. New vaccine may bring man and chimpanzee into tragic conflict. Science. 200:1027. 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Slate, D.L., Shulman, L., Lawrence, J.B. et al. Presence of human chromosome 21 alone is sufficient for hybrid cell sensitivity to human interferon. J. Virol. 25:319. 1978.Google Scholar
  12. 12.
    Crowell, R.L. Specific viral interference in HeLa cell cultures chronically infected with Coxsackie B5 virus. J. Bact. 86: 517. 1963.Google Scholar
  13. 13.
    Fareed, G., Davoli, D, Molecular biology of papovaviruses. Ann. Rev. Biochem. 46:471 1977.Google Scholar
  14. 14.
    St. Jeor, S.C., Hutt, R. Cell DNA replication as a function in the synthesis of human cytomegalovirus. J. Gen. Virol. 37: 65. 1977.Google Scholar
  15. 15.
    DeMarchi, J.N., Kaplan, A.S. Replication of human cytomegalovirus DNA: lack of dependence on cell DNA synthesis. J. Virol. 18:1063. 1976.Google Scholar
  16. 16.
    DeMarchi, J.N., Kaplan, A.S. Physiologic state of human embryonic lung cell affects their response to human cytomegalovirus. J. Virol. 23:126. 1977.Google Scholar
  17. 17.
    Temin, H.M., Baltimore, D. RNA-directed DNA synthesis and RNA tumor viruses. Adv. Virus Res. 17:129. 1972.Google Scholar
  18. 18.
    St. Jeor, S.C., Rapp, F. Cytomegalovirus: conversion of non-permissive cells to a permissive state for virus replication. Science 181:1060. 1973.Google Scholar
  19. 19.
    Arber, W., Linn, S. DNA modification and restriction. Ann. Rev. Biochem. 36:467. 1969.Google Scholar
  20. 20.
    Meselson, M., Yuan, R., Heywood, J. Restriction and modification of DNA. Ann. Rev. Biochem. 41:447. 1972.Google Scholar
  21. 21.
    Ishida, N., Homma, M. A variant Sendai virus, infectious to egg embryos but not to L cells. Tohoku J. Exp. Med. 73: 56. 1960Google Scholar
  22. 22.
    Scheid, A., Choppin, P.W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 57:475. 1974.Google Scholar
  23. 23.
    Scheid, A., Choppin, P.W. Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology. 80:42. 1977.Google Scholar
  24. 24.
    Osborn, J.E., Walker, D.L. Virulence and attenuation of murine cytomegalovirus. Infect. Immun. 3:228. 1971.Google Scholar
  25. 25.
    Mannini, A., Medearis, D.N. Jr. Mouse salivary gland virus infections. Amer. J. Hyg. 73:320. 1961.Google Scholar
  26. 26.
    Osborn, J.E., Medearis, D.N. Jr. Studies of the relationship between mouse cytomegalovirus and interferon. Proc. Soc. Exp. Biol. Med. 121:819. 1966.Google Scholar
  27. 27.
    Osborn, J.E., Blazkovec, A.A., Walker, D.L. Immunosuppression during acute murine cytomegalovirus infection. J. Immunol. 100: 835. 1968.Google Scholar
  28. 28.
    Howard, R.J., Balfour, H.H. Jr., Seidel, M.V. et al. Effect of murine cytomegalovirus on cell-mediated immunity. Transplant. Proc. 9:355. 1977.Google Scholar
  29. 29.
    Reddy, V.B., Thimmappaya, B., Dhar, R. et al. The genome of simian virus 40. Science. 200:494. 1978.Google Scholar
  30. 30.
    Schaffer, P.A. Temperature-sensitive mutants of herpesvirus. Current Topics in Microbiol, and Immunol. 70:51. 1975.Google Scholar
  31. 31a.
    Pereira, L., Cassai, E., Honess, R.W. et al. Variability in the structural polypeptides of herpes simplex virus 1 strains: potential application in molecular epidemiology. Infect. Immun. 13:211. 1976.Google Scholar
  32. 31b.
    Buchman, T.G., Roizman, B., Adams, G. et al. Restriction endonuclease fingerprinting of herpes simplex virus DNA: a novel epidemiological tool applied to a nosocomial outbreak.Google Scholar
  33. 31c.
    Milstein, J.B., Walker, J.R., Eron, L.J. Correlation of virus polypeptide structure with attenuation of poliovirus type 1. J. Virol. 23:811. 1977.Google Scholar
  34. 32.
    Ashe, W.K., Notkins, A.L. Neutralization of an infectious herpes simplex virus-antibody complex by anti-gamma globulin. Proc. Nat. Acad. Sci. U.S.A. 56:5:447. 1966.CrossRefGoogle Scholar
  35. 33.
    Graham, F.L., Veldhuisen, G., Wilkie, N.M. Infectious herpesvirus DNA. Nature New Biol. 245:265. 1973.Google Scholar
  36. 34.
    Geelan, J.L.M.C., Walig, C, Werthein, P. et al. Human cytomegalovirus DNA. I. Molecular weight and infectivity. J. Virol. 26:813. 1978.Google Scholar
  37. 35.
    Schmidt, N.J., Dennis, J., Lennette, E.H. Complement-fixing reactivity of varicella-zoster virus subunit antigens with sera from homotypic infections and heterotypic herpes simplex virus infections. Infect. Immun. 15:850, 1977.Google Scholar
  38. 36.
    Palese, P., Ritchey, M.B. Live attenuated influenza virus vaccine strains with temperature-sensitive defects in P3 protein and nucleoprotein. Virology. 78:183.1977.Google Scholar
  39. 37.
    Richman, D.D., Murphy, B. R., Chanock, R.M. Demonstration of a non-temperature-sensitive growth-restriction mutation in a ts mutant of influenza A virus: implications for live virus vaccine development. Virology. 83:356. 1977.Google Scholar
  40. 38.
    Douglas, R.G., Betts, R. Studies with live attenuated influenza vaccines. Amer. J. Clin. Path. 70:153 1978.Google Scholar
  41. 39.
    Moss, B., Keith, J.M., Gerhoswitz, A., Ritchey, M.B., Palese, P. Common sequence at the 5′ ends of the segmented RNA genomes of influenza A and B viruses. J. Virol. 25:312. 1978.Google Scholar
  42. 40.
    Meyer, H.M. Jr., Hopps, H.E., Parkman, P.D. et al. Review of existing vaccines for influenza. Amer. J. Clin. Path. 70: 146. 1978.Google Scholar
  43. 41.
    Tyeryar, F.J., Richardson, L., Belshe, R. Report of a workshop on respiratory syncytial virus and parainfluenza viruses. J. Inf. Dis. 137:835. 1978.Google Scholar
  44. 42.
    Kim, H.W., Leikin, S.L., Arrobio, J., et al. Cell-mediated immunity to respiratory syncytial virus induced by inactivated vaccine or by infection. Pediatric Res. 10:74. 1976.Google Scholar
  45. 43.
    Craighead, J.E. Report of a workshop: disease accentuation after immunization with inactivated microbial vaccines. J. Inf. Dis. 131:749. 1975.Google Scholar
  46. 44.
    Chanock, R.M., Richardson, L.S., Belshe, R.B. et al. Prospects for prevention of bronchiolitis caused by respiratory syncytial virus. Pediatric Res. 11:264. 1977.Google Scholar
  47. 45.
    Chanock, R.M., Kim, H.W., Brandt, C. et al. Respiratory syncytial virus, in Viral Infections of Humans: Epidemiology and Control. (A.S. Evans, ed.) Plenum Medical Book Co., New York. 1976.Google Scholar
  48. 46.
    Brunn, F.W., Yeager. A.S. Respiratory syncytial virus in early infancy: circulating antibody and the severity of infection. Amer. J. Dis. Child. 131:145. 1977.Google Scholar
  49. 47.
    Mcintosh, K., Master, H.B., Orr, I. et al. The immunologic response to infection with respiratory syncytial virus in infants. J. Inf. Dis. 138:24. 1978.Google Scholar
  50. 48.
    Buynak, E.B., Weibel, R.E., McClean, A.A. et al. Live respiratory syncytial virus vaccine administered parenterally. Proc. Soc. Exp. Biol. Med. 157:636. 1978.Google Scholar
  51. 49.
    Maupas, P., Goudeau, A., Coursaget, P. et al. Immunisation against hepatitis B in man. Lancet i:1367. 1976.Google Scholar
  52. 50.
    Robinson, W.S., Lutwick, L. The virus of hepatitis type B. New Eng. J. Med. 295:1168. 1976.Google Scholar
  53. 51.
    Robinson, W.S. The genome of hepatitis B virus. Ann. Rev. Micro. 31:357. 1976.Google Scholar
  54. 52.
    Buynak, E.B., Roehm, R.R., Tytell, A.A. et al. Vaccine against human hepatitis B. J.A.M.A. 235:2832. 1976.PubMedCrossRefGoogle Scholar
  55. 53.
    Purcell, R.H., Gerin, J.L. Hepatitis B vaccines: on the threshold. Amer. J. Clin. Path. 70:159. 1978.Google Scholar
  56. 54.
    Zuckerman, A.J. Oncogenic potential of new viral vaccines. Nature 272:579. 1978.Google Scholar
  57. 55.
    Maynard, J.E., Berquist, K.R., Krushak, D.H. Experimental infection of chimpanzees with the virus of hepatitis B. Nature. 237: 514. 1972.Google Scholar
  58. 56.
    Barker, L.F., Chisari, F.V., McGrath, P.P. Transmission of type B viral hepatitis to chimpanzees. J. Inf. Dis. 127: 648. 1973.Google Scholar
  59. 57.
    Gershon, A.A. Varicella-zoster virus: prospects for active immunization. Amer. J. Clin. Path. 70:170. 1978.Google Scholar
  60. 58.
    Brunell, P.A., Wolman, S.R., Steinberg, S. Propagation of varicella-zoster virus in a diploid strain of embryonic thyroid cells from the rhesus monkey. J. Inf. Dis. 125:545. 1972.Google Scholar
  61. 59.
    Caunt, A.E. Growth of varicella-zoster in human thyroid tissue cultures. Lancet ii:982. 1963.Google Scholar
  62. 60.
    Brunell, P.A. Separation of infectious varicella-zoster virus from human embryonic lung fibroblasts. Virology 31:732. 1967.Google Scholar
  63. 61.
    Rifkind, D. The activation of varicella-zoster virus infections by immunosuppressive therapy. J. Lab. Clin. Med. 68: 463. 1966.Google Scholar
  64. 62.
    Sabin, A.B. Varicella-zoster vaccine. J.A.M.A. 238:1731. 1977.PubMedCrossRefGoogle Scholar
  65. 63.
    Shibuta, H., Ishikawa, T., Hondo, R. et al. Varicella virus isolation from spinal ganglion. Arch. f.d. Ges. Virusforsch. 45:382. 1974.Google Scholar
  66. 64.
    Kempe, C.H., Gershon, A.A. Varicella vaccine at the crossroads. Pediatrics 60:930. 1977.Google Scholar
  67. 65.
    Asano, Y., Nakayama, H., Yazaki, T. et al. Protection against varicella in family contacts by immediate inoculation with live varicella vaccine. Pediatrics. 59:3. 1977.Google Scholar
  68. 66.
    Asano, Y., Takahashi, M. Clinical and serologic testing of a live varicella vaccine and two year follow-up for immunity of the vaccinated children. Pediatrics 60:810. 1977.Google Scholar
  69. 67.
    Asano, Y., Nakayama, H., Yazaki, T. et al. Protective efficacy of vaccination in children in four episodes of natural varicella and zoster in the ward. Pediatrics 59:8. 1977.Google Scholar
  70. 68.
    Kamiya, H., Ihara, T., Hattori, A. et al. Diagnostic skin test reactions with varicella virus antigen and clinical application of the test. J. Inf. Dis. 136:784. 1977.Google Scholar
  71. 69.
    Baba, K., Yabuuchi, H., Okuni, H. et al. Studies with live varicella vaccine and inactivated skin test antigen: protective effect of the vaccine and clinical application of the skin test. Pediatrics 61:550. 1978.Google Scholar
  72. 70.
    Izawa, T., Ihara, T., Hattori, A. et al. Application of a live varicella vaccine in children with acute leukemia or other malignant diseases. Pediatrics 60:805. 1977.Google Scholar
  73. 71.
    Stevens, D.A., Merigan, T.C. Interferon, antibody and other host factors in herpes zoster. J. Clin. Invest. 51:1170. 1972.Google Scholar
  74. 72.
    Elek, S.D., Stern, H. Development of a vaccine against mental retardation caused by cytomegalovirus infection inutero. Lancet 1:1. 1974.Google Scholar
  75. 73.
    Just, M., Buergin-Wolff, A., Emoedi, G., et al. Immunisation trials with live, attenuated cytomegalovirus (Towne 125). Infection 3:111. 1975.Google Scholar
  76. 74.
    Plotkin, S.A., Farguhar, J., Hornberger, E. Clinical trials of immunization with the Towne 125 strain of human cytomegalovirus. J. Inf. Dis. 134:470. 1976.CrossRefGoogle Scholar
  77. 75.
    Weller, T.H. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. New Eng. J. Med. 285:203, 267. 1971.Google Scholar
  78. 76.
    Osborn, J.E. Diseases caused by human cytomegaloviruses. Chapter 37C in Brennemann-Kelley’s Textbook of Pediatrics, Hoeber Medical Division, Harper and Rowe, New York. 1975.Google Scholar
  79. 77.
    Huang, E.S., Kilpatrick, B.A., Huang, T. et al. Detection of human cytomegalovirus and analysis of strain variation. Yale J. Biol. Med. 49:29. 1976.Google Scholar
  80. 78.
    Zablotney, S.L., Wentworth, B.B., Alexander, E.R. Antigenic relatedness of 17 strains of human cytomegalovirus. Amer. J. Epidemiol. 107:336. 1978.Google Scholar
  81. 79.
    Beutner, K.R., Morag, A., Deibel, R. et al. Strain-specific local and systemic cell-mediated immune responses to cytomegalovirus in humans. Infect. Immun. 20:82. 1978.Google Scholar
  82. 80.
    Waner, J., Weiler, T.H. Analysis of antigenic diversity among human cytomegaloviruses by kinetic neutralization tests with high-titered rabbit antiser. Infect. Immun. 21:151. 1978.Google Scholar
  83. 81.
    Waner, J., Weiler, T.H., Kevy, S. Patterns of cytomegalo-viral complement-fixing antibody activity: a longitudinal study of blood donors. J. Inf. Dis. 127:538. 1973.Google Scholar
  84. 82.
    Gold, E., Nankervis, G.A. Cytomegalovirus. Chapter 7 in Viral Infections on Humans: Epidemiology and Control. (A.S. Evans, Ed.) Plenum Medical Book Co., New York. 1976.Google Scholar
  85. 83.
    Rola-Pleszczynski, M., Frenkel, L.D., Fuccillo, D.A. et al. Specific impairment of cell-mediated immunity in mothers of infants with congenital infection due to cytomegalovirus. J. Inf. Dis. 135:386. 1977.Google Scholar
  86. 84.
    Gehrz, R.C., Marker, S.C., Knoff, S.O. et al. Specific cell-mediated immune defect in active cytomegalovirus infection of young children and their mothers. Lancet ii:844. 1977.Google Scholar
  87. 85.
    Yaeger, A.S., Martin, H.P., Stewart, J.A. Congenital cytomegalovirus infection: outcome for the subsequent sibling. Clin. Pediatrics. 16: 455. 1977.CrossRefGoogle Scholar
  88. 86.
    Stagno, S., Reymolds, D.W., Huang, E.-S., et al. Congenital cytomegalovirus infection: occurrance in an immune population. New Eng. J. Med. 296:254. 1977.Google Scholar
  89. 87.
    Reynolds, D.W., Stagno, S., Hosty, T.S. et al. Maternal cytomegalovirus excretion and perinatal infection. New Eng. J. Med. 289:1. 1973.Google Scholar
  90. 88.
    Reynolds, D.W., Stagno, S., Reynolds, R. et al. Perinatal cytomegalovirus infection: influence of placentally transferred maternal antibody. J. Inf. Dis. 137:564. 1978.Google Scholar
  91. 89.
    Nankervis, G.A., Kumar, M.L., Gold, E. Primary infection with cytomegalovirus during pregnancy. Ped. Res. 8:427, 1974.Google Scholar
  92. 90.
    Howard, R.J., Balfour, H.H. Jr. Prevention of morbidity and mortality of wild murine cytomegalovirus by vaccination with attenuated cytomegalovirus. Proc. Soc. Exp. Biol. Med. 156: 365. 1977.Google Scholar
  93. 91.
    Medearis, D.N. Jr., Prokay, S.L. Effect of immunization of mothers on cytomegalovirus infection in suckling mice. Proc. Soc. Exp. Biol. Med. 157:523. 1978.Google Scholar
  94. 92.
    Osborn, J.E., Walker, D.L. Virulence and attenuation of murine cytomegalovirus. Infect. Immun. 3:228. 1970.Google Scholar
  95. 93.
    Hsiung, G.D., Choi, Y., Bia, F. Cytomegalovirus infection in quignea pigs. I. Viremia during acute primary and chronic persistent infection. J. Inf. Dis. 138:191. 1978.Google Scholar
  96. 94.
    Choi, Y., Hsiung, G.D. Cytomegalovirus infection in guinea pigs. II. Transplacental and horizontal transmission. J. Inf. Dis. 138:197. 1978.Google Scholar
  97. 95.
    Hanshaw, J.B. A cytomegalovirus vaccine? Amer. J. Dis. Child. 128:141. 1974.Google Scholar
  98. 96.
    Medearis, D.N. Jr. Human cytomegalovirus immunization prospects. New Eng. J. Med. 296:1289. 1977.Google Scholar
  99. 97.
    Plotkin, S.A., Farquhar, J., Hornberger, E. Clinical trials of immunization with the Towne 125 strain of human cytomegalovirus. J. Inf. Dis. 134:470. 1976.CrossRefGoogle Scholar
  100. 98.
    Stern, H. Cytomegalovirus infection in the neonate and its prezention. Postgrad. Med. J. 53:588. 1977.Google Scholar
  101. 99.
    Glazer, J.P., Friedman, H.M., Grossman, R.A. et al. Cytomegalovirus vaccination and renal transplantation. Lancet i: 90. 1978.Google Scholar
  102. 100.
    Babiuk, L.A., Rouse, B.T. Immune interferon production by lymphoid cells: role in the inhibition of herpesviruses. Infect. Immun. 13:1567. 1976.Google Scholar
  103. 101.
    Kitces, E.N., Morahan, P.S., Tew, J.G. et al. Protection from oral herpes simplex virus infection by a nucleic acid-free virus vaccine. Infect. Immun. 16:955. 1977.Google Scholar
  104. 102.
    Wise, T.G., Pavan, P.R., Ennis, F.A. Herpes simplex virus vaccines. J. Inf. Dis. 136:706. 1977.Google Scholar
  105. 103.
    Parks, W.P., Rapp, F. Prospects for herpesvirus vaccination-safety and efficacy considerations. Progr. Med. Virol. 21: 188. 1975.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • June E. Osborn
    • 1
  1. 1.Department of Medical Microbiology and PediatricsUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations