Use of Recombinant DNA Technology for the Production of Polypeptides

  • Walter L. Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 118)


There are many polypeptides of biologic and medical interest which have not been fully studied because they cannot be obtained in adequate quantity with sufficient purity and economy. Recent advances in recombinant DNA technology now give promise of in vivo synthesis in bacteria of a wide variety of polypeptide hormones, specific immunoglobins, enzymes and other proteins. This presentation will first review the procedures for constructing chimeric microorganisms containing the DNA coding for a eucaryotic protein, then discuss the problems and experience in obtaining such proteins from DNA cloned in procaryotic cells.


Plasmid pBR322 Chimeric Plasmid Procaryotic Cell Cloning Vehicle Eucaryotic Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seeburg, P.H., Shine, J., Martial, J.A., Baxter, J.D., and Goodman, H.M. Nucleotide sequence and amplification in bacteria of the structural gene for rat growth hormone. Nature 270: 486–494. 1977.PubMedCrossRefGoogle Scholar
  2. 2.
    Shine, J., Seeburg, P.H., Martial, J.A., Baxter, J.D., and Goodman, H.M. Construction and analysis of recombinant DNA for human chorionic somatomammotropin. Nature 270:494–499. 1977.PubMedCrossRefGoogle Scholar
  3. 3.
    Fiers, W., Contreras, R., Duerinick, F., Haegeman, G., Iserentant, D., Merregaert, J., Joy, W.M., Molemans, F., Raemaekers, A., Van den Berghe, A., Volkaert, G., and Ysebaert, M. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260: 500–507. 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Shine, J. and Delgarno, L. Identical 3′-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eu-karyots. Biochem. J. 141:609–615. 1974.PubMedGoogle Scholar
  5. 5.
    Shine, J. and Delgarno, L. Terminal-sequence analysis of bacterial ribosomal RNA, correlation between the 3′-terminal-poly-pyrimidine sequence of 16-S RNA and translational specificity of the ribosome. Eur. J. Biochem. 57:221–230. 1975.PubMedCrossRefGoogle Scholar
  6. 6.
    Steitz, J.A., and Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16 S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. 72:4734–4738. 1975.PubMedCrossRefGoogle Scholar
  7. 7.
    Recombinant DNA research guidelines. Federal Register 41: 27902–27943 (1976); Recombinant DNA Research Revised guidelines. Federal Register 43: 60080-60131(1978).Google Scholar
  8. 8.
    Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.C. Bolivar, F., and Boyer, H.W. Expression in Escherichia coli of a chemically synthesized gene for human somatostatin. Science 198:1056–1063. 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang, A.C.Y., and Cohen, S.N. Genome construction between bacterial species in. vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc. Natl. Acad. Sci. 1030–1034. 1974.Google Scholar
  10. 10.
    Morrow, J.F., Cohen, S.N., Chang, A.C.Y., Boyer, H.W., Goodman, H.M., and Helling, R.B. Replication and transcription of eu-karyotic DNA in Escherichia coli. Proc. Natl. Acad. Sci. 71; 1743–1747. 1974.PubMedCrossRefGoogle Scholar
  11. 11.
    Yeu, P.H., Sodja, A., Cohen, Jr., M.C., Conrad, S.E., Wu, M., Davidson, N., and Ilgen, C. Sequence arrangement of tRNA genes on a fragment of Drosophila melanogaster DNA cloned in E. coli. Cell 11:763–777. 1977.CrossRefGoogle Scholar
  12. 12.
    Breathnach, R., Mandel, J.L., and Chambon, P. Ovalbumin gene is split in chicken DNA. Nature 270:314–319. 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. An amazing sequence arrangement of the 5′ ends of adenovirus-2 messenger RNA. Cell 12:l–8. 1977.CrossRefGoogle Scholar
  14. 14.
    Roop, D.R., Nordstrom, J.L., Tsai, S.Y., Tsai, M.-J., and O’Malley, B.W. Transcription of structural and intervening sequences in the ovalbumin gene and identification of potential ovalbumin mRNA precursors. Cell 15:671–685. 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Polsky, F., Edgell, M.W., Seidman, J.G., and Leder, P. High capacity gel preparative electrophoresis for purification of fragments of genomic DNA. Analyt. Biochem. 87:397–410. 1978.PubMedCrossRefGoogle Scholar
  16. 16.
    Hardies, S.C., and Wells, R.D. Preparative fractionation of DNA restriction fragments by reversed phase column chromatography. Proc. Natl. Acad. Sci. 73:3117–3121. 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517. 1975.PubMedCrossRefGoogle Scholar
  18. 18.
    Verma, I.M., Temple, G.F., Fan, H., and Baltimore, D. In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA Nature 235:163–167. 1972.Google Scholar
  19. 19.
    Benton, W.D., And Davis, R. Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196: 180–182. 1977.PubMedCrossRefGoogle Scholar
  20. 20.
    Dugaiczyk, A., Woo, S.L.C., Lai, E.C., Mace, Jr., M.L., Mc-Reynolds, S.L., and O’Malley, B.W. The natural ovalbumin gene contains seven intervening sequences. Nature 274:328–333. 1978.PubMedCrossRefGoogle Scholar
  21. 21.
    Tilghman, S.M., Tiemeier, D.C., Polsky, F., Edgell, M.H., Seidman, J.G., Leder, A., Enquist, L.W., Norman, B., and Leder, P. Cloning specific segments of the mammalian genome: Bacteriophage λ containing mouse globin and surrounding gene sequences. Proc. Natl. Acad. Sci. 74:4406–4410. 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Hynes, N.E., Groner, B., Sippel, A.E., Nguyen-Huu, M., and Schutz, G. mRNA complexity and egg white protein mRNA in mature and hormone-withdrawn oviduct. Cell 11:923–932. 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Martial, J.A., Baxter, J.D., Goodman, H.M., and Seeburg, P.H. Regulation of growth hormone messenger RNA by thryoid and glucocorticoid hormones. Proc. Natl. Acad. Sci. 74:1816–1820. 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Temin, H.M. and Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213. 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226:1209–1211. 1970.PubMedCrossRefGoogle Scholar
  26. 26.
    Scheller, R.H., Dickerson, R.E., Boyer, H.W., Riggs, A.D., and Itakura, K. Chemical synthesis of restriction enzyme recognition sites useful for cloning. Science 196:177–180. 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Sgaramella, V., Van de Sande, J.H., and Khorana, H.G. Studies on polynucleotides, C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc. Natl. Acad. Sci. 67: 1468–1475. 1970.PubMedCrossRefGoogle Scholar
  28. 28.
    Villa-Komaroff, K., Efstratiadis, A., Broome, S., Lomedico, P., Tizard, R., Naber, S.P., Chick, W.L., and Gilbert, W. A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. 75:3727–3731. 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Chang, A.C.Y., Nunberg, J.H., Kaufman, R.J., Erlich, H.A., Schimke, R.T., and Cohen, S.N. Phenotypic expression in E. coli of a DNA sequence coding for mouse dihydrofolate reductase. Nature 275: 617–624. 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen, S.N., Chang, A.C.Y., Boyer, H.W., and Helling, R.B. Construction of biologically functional bacterial plasmids in vivo. Proc. Natl. Acad. Sci. 70:3240–3244. 1973.PubMedCrossRefGoogle Scholar
  31. 31.
    Bolivar, F., Rodriguez, R.L., Betlach, M.C., and Boyer, H.W. Construction and characterization of new cloning vehicles I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93. 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Betlach, M., Hershfield, V., Chow, L., Brown, W., Goodman, H.M., and Boyer, H.W. A restriction endonuclease analysis of the bacterial plasmid controlling the Eco Rl restriction and modification of DNA. Fed. Proc. 35:2037–2043. 1976.PubMedGoogle Scholar
  33. 33.
    Curtiss, III, R., Pereira, D.A., Hsu, J.C., Hull, S.C., Clarke, J.E., Maturin, L.S., Goldschmidt, R., Moody, R., Inoue, M., and Alexander, L. Biologic containment. The subordination of Escherichia coli K-12. In: Recombinant Molecules: Impact on Science and Society (Miles International Symposium Series No. 10). R.F. Beers, Jr. and E.G. Bassett, Eds. Raven Press, NY. pp. 45–46. 1977.Google Scholar
  34. 34.
    Thomas, M., Cameron, J.R., and Davis, R.W. Viable molecular hybrids of bacteriophage lambda and eucaryotic DNA. Proc. Natl. Acad. Sci. 71:4579–4583. 1974.PubMedCrossRefGoogle Scholar
  35. 35.
    Enquist, L., Tiemeier, D., Leder, P., Weisberg, R., and Sternberg, N. Safer derivatives of bacteriophage λgt-λc for use in cloning of recombinant DNA molecules. Nature 259:596–598. 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Tiemeier, D., Enquist, L., and Leder, P. Improved derivative of a phage λ EK2 vector for cloning recombinant DNA. Nature 263: 526–527. 1976.CrossRefGoogle Scholar
  37. 37.
    Blattner, F.R., Williams, B.G. Blechl, A.E., Dennison-Thompson, K., Faber, H.E., Furbug, L.A., Grunwald, D.J., Kiefer, D.O., Moore, D.D., Schinn, E.L., and Smithies, O. Charonphages: Safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161–169. 1977.PubMedCrossRefGoogle Scholar
  38. 38.
    Leder, P., Tiemeier, D., and Enquist, L. EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organisms: The XgtWES system. Science 196:175–177. 1977.PubMedCrossRefGoogle Scholar
  39. 39.
    Kourilsky, P., Gros, D., Rougeon, F., and Mach, B. Transcription of a mammalian sequence under phage λ control. Nature 267:637–639. 1977.PubMedCrossRefGoogle Scholar
  40. 40.
    Nussbaum, A.L., Davoli, D., Ganem, D., and Fareed, G.C. Construction and propagation of a defective simian virus 40 genome bearing an operator from bacteriophage λ. Proc. Natl. Acad. Sci. 73: 1068–1072.Google Scholar
  41. 41.
    Villarreal, L.P. and Berg, P. Hybridization in situ of SV40 plaques: Detection of recombinant SV40 virus carrying specific sequences of nonviral DNA. Science 196:183–185. 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Marians, K. J., Wu, R., Stavinsky, J., Hozumi, T., and Narang, S.A. Cloned synthetic lac operator DNA is biologically active. Nature 263:744–748. 1976.PubMedCrossRefGoogle Scholar
  43. 43.
    Heyneker, H.L., Shine, J., Goodman, H.M., Boyer, H.W., Rosenberg, J., Dickerson, R.E., Narancy, S.A., Itakura, K., Lin, S., and Riggs, A.D. Synthetic lac operator DNA is functional in vivo. Nature 263:748–752. 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Kedes, K.H., Chang, A.C.Y., Houseman, D., and Cohen, S.N. Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature 255:533–538. 1975.PubMedCrossRefGoogle Scholar
  45. 45.
    Chang, A.C.Y., Lansman, R.A., Clayton, D.A., and Cohen, S.N. Studies of mouse mitochondrial DNA in Escherichia coli: Structure and function of the Eucaryotic-Procaryotic chimeric Plasmids. Cell 6:231–244. 1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Roozen, K.H., Fenwick, Jr., R.G., and Curtiss, III, R. Synthesis of ribonucleic acid and protein in plasmid-containing mini-cells of Escherichia coli K-12. J. Bacterid. 107:21–33. 1971.4Google Scholar
  47. 47.
    Megaher, R.B., Tait, R.C., Betlach, M., and Boyer, H.W. Protein expression in E. coli minicells by recombinant plasmids. Cell 10:521–536. 1977.CrossRefGoogle Scholar
  48. 48.
    Struhl, K., and Davis, R.W. Production of a functional eu-karyotic enzyme in Escherichia coli: Cloning and expression of the yeast functional gene for imidazoleglycerolphosphate dehydrase (his 3). Proc. Natl. Acad. Sci. 74:5255–5259. 1977.PubMedCrossRefGoogle Scholar
  49. 49.
    Clarke, L., and Carbon, J. Functional expression of cloned yeast DNA in Escherischia coli: Specific complementation of arginosuccinate lyase (arg h) mutations. J. Molec. Biol. 120: 517–532. 1978.PubMedCrossRefGoogle Scholar
  50. 50.
    Mercereau-Puijalon, O., Royla, A., Cami, B., Garapin, A., Krust, A,, Gannon, F., and Kourilsky, P.: Synthesis of an ovalbumin-like protein by Escherichia coli K12 harbouring a recombinant Plasmid. Nature 275:505–510. 1978.PubMedCrossRefGoogle Scholar
  51. 51.
    Seeburg, P.H., Shine, J., Martial, J.A., Ivarie, R.D., Morris, J.A., Ullrich, A., Baxter, J.D. and Goodman, H.M. Synthesis of growth hormone by bacteria. Nature 276:795–798. 1978.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodriguez, R.L., Bolivar, F., Goodman, H. M., Boyer, H.W., and Betlach, M.: Construction and characterization of cloning vehicles. In: Molecular Mechanisms in the Control of Gene Expression. D.P. Nierlich, W.J. Rutter and C. F. Fox, Eds. Academic Press, New York. 1976. pp. 471–477.Google Scholar
  53. 53.
    Sutcliffe, J.G. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. 75:3737–3741. 1978.PubMedCrossRefGoogle Scholar
  54. 54.
    Broome, S., and Gilbert, W. Immunological screening method to detect specific translation products. Proc. Natl. Acad. Sci. 75:2746–2749. 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Walter L. Miller
    • 1
  1. 1.Endocrine Research Division and the Department of PediatricsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations