Skip to main content

An Approach to the Study of Electron Transport Systems

  • Chapter
Methods in Membrane Biology

Abstract

Metabolic pathways, in order to fulfill their role in biological organisms, must provide a continuing net conversion of available substrate into products which are required by the organism and are otherwise unavailable. As such, the overall metabolic conversion of substrate to product must be associated with a negative free energy change and will not be at equilibrium. Analysis of the reactants in various enzymic reactions has established, however, that the cellular metabolic pathways contain many enzymic steps which are near equilibrium. The overall metabolic processes are not at equilibrium because a few reactions are essentially irreversible and serve to control kinetically the net flow of metabolites through the pathway. Krebs and Veech (1969) have stated, “This network [of near equilibrium processes] is one of thermodynamic equilibria whereas living cells, of course, do not represent equilibria but steady states. But the fact that thermodynamic equilibrium of a cell is synonymous with death does not imply that equilibria cannot play an important part in the Organization of the chemical cell dynamics. Equilibria form a basic framework upon which virtually irreversible processes are superimposed.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. L., Kuwana, T., and Hartzeil, C. R., 1976, Spectroelectrochemical investigations of stoichiometry and oxidation-reduction potentials of cytochrome c oxidase components in the presence of carbon monoxide: The invisible copper, Biochemistry 15:3847–3855.

    Article  PubMed  CAS  Google Scholar 

  • Benzinger, T., Kitzinger, C., Hems, R., Burton, K., 1959, Free energy changes of the Glutaminase reaction and the hydrolysis of the terminal pyrophosphate bond of adenosine triphosphate, Biochem. J. 71:400–414.

    PubMed  CAS  Google Scholar 

  • Chance, B., Erecinska, M., Chance, E. M., Boveris, A., and Wagner, M., 1972, Kinetic control of electron flow, in: Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria (M. A. Mehlman and R. W. Hansen, eds.), pp. 27–37, Academic Press, New York.

    Google Scholar 

  • Clark, W. M., 1960, Oxidation-Reduction Potentials of Organic Systems, Waverly Press, Baltimore.

    Google Scholar 

  • DeVault, D., 1971, Energy transduction in electron transport, Biochim. Biophys. Acta 226:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, P. L., 1971, Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 K in chromatophores of chromatium D and Rhodoseudomonas gelatinosa, Biochim. Biophys. Acta 226:63–80.

    Article  CAS  Google Scholar 

  • Dutton, P. L., 1978, Redox potentiometry: Determination of midpoint potentials of oxidation-reduction components of biological election transfer systems, Methods Enzymol. 54:411–435.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, P. L., and Lindsay, J. G., 1973, Behaviour of cytochromes b and c of pigeon heart mitochondria in the presence of ATP: Measured oxidation-reduction potentials: in: Mechanisms in Bioenergetics (G. F. Azzone, L. Ernster, S. Papa, E. Quaglariello, and N. Siliprandi, eds.), pp. 535–544, Academic Press, New York.

    Google Scholar 

  • Dutton, P. L., and Wilson, D. F., 1974, Redox potentiometry in mitochondrial and photo-synthetic bioenergetics, Biochim. Biophys.Acta 346:165–212.

    PubMed  CAS  Google Scholar 

  • Dutton, P. L., Wilson, D. F., and Lee C. P., 1970, Oxidation-reduction potentials of cytochromes in mitochondria, Biochemistry 9:5077–5082.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, P. L., Wilson, D. F. and Lee, C. P., 1971, Energy dependence of oxidation-reduction potentials of the b and c cytochromes in beef heart submitochondrial particles, Biochem. Biophys. Res. Commun. 43:1186–1191.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., and Wilson, D. F., 1977, On the mechanism of regulation of cellular respiration: The dependence of respiration on the cytosolic [ATP],[ADP] and [Pi], Adv. Exp. Med. Biol. 94:271–278.

    PubMed  CAS  Google Scholar 

  • Erecinska, M., Wilson, D. F., Mukai, Y., and Chance, B., 1970, Oxidation-reduction midpoint potentials of the mitochondria flavo-proteins, Biochem. Biophys. Res. Commun. 41:386–392.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Chance, B., and Wilson, D. F., 1971, The oxidation-reduction potential of the copper signal in pigeon heart mitochondria, FEBS Lett. 16:284–286.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Veech, R. L., and Wilson, D. F., 1974, Thermodynamic relationships between the oxidation-reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria, Arch. Biochem. Biophys. 160:412–421.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Wilson, D. F., and Miyata, Y., 1976, mitochondrial cytochrome b-c complex: Its oxidation-reduction components and their stoichiometry, Arch. Biochem. Biophys. 177:133–143.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Wilson, D. F., and Nishiki, K., 1978, Homeostatic regulation of cellular energy metabolism: Experimental characterization in vivo and fit to a model, Am. J. Physiol./Cell Biol. 234:C82–89.

    CAS  Google Scholar 

  • Green, D. E., Jarnefelt, J., and Tisdale, H. D., 1960, Studies on the electron transport system: The isolation and properties of soluble cytochrome c, Biochim. Biophys. Acta 31:34–46.

    Article  Google Scholar 

  • Guynn, R., and Veech, R. L., 1973, The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate citrate lyase reactions, J. Biol. Chem. 248:6966–6969.

    PubMed  CAS  Google Scholar 

  • Heineman, W. R., Norris, B. J., and Goelz, J. F., 1975, Measurements of enzyme E 0′ values by optically transparent thin layer electrochemical cells, Anal. Chem. 47:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, H. A., and Veech, R. L., 1969, Pyridine nucleotide interrelations, in: The Energy Level and Metabolic Control in Mitochondria (S. Papa, J. M. Tager, E. Quaglariello, and E. C. Slater, eds.), pp. 329–382, Adriatica Editrice, Bain, Italy.

    Google Scholar 

  • Lambowitz, A. M., Bonner, W. D., Jr., and Wikstrom, M. K. F., 1974, On the lack of ATP induced midpoint potential shift for cytochrome b 566 in plant mitochondria, Proc. Natl. Acad. Sci. USA 71:1183–1187.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, J. S., Jr., and Erecinska, M., 1975, Thermodynamic and EPR characterization of mitochondrial succinate-cytochrome c reductase-phospholipid complexes, Biochim. Biophys. Acta 387:95–108.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, J. S., Jr., Wilson, D. F., Owen, C. S., and King, T. E., 1974, Heme-heme interaction in cytochrome c oxidase: The cooperativity of the hemes of cytochromes oxidase as evidenced in the reaction with CO, Arch. Biochem. Biophys. 100:476–486.

    Article  Google Scholar 

  • Lewis, G. N., 1925, A new principle of equilibrium, Proc. Natl. Acad. Sci. USA 11:179–183.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, J. G., 1974, ATP-induced oxidation of the a3 2+ -CO compound in pigeon heart mitochondria, Arch. Biochem. Biophys. 163:705–715.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, J. G., and Wilson, D. F., 1972, Apparent adenosine triphosphate induced ligand change in cytochrome a of pigeon heart mitochondria, Biochemistry 11:4613–4621.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, J. G., and Wilson, D. F., 1974, Reaction of cytochrome oxidase with CO: Involvement of the invisible copper, FEBS Lett. 48:45–49.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, J. G., Dutton, P. L., and Wilson, D. F., 1972, Energy dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart, Biochemistry 11:1937–1943.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, J. G., Owen, C. S., and Wilson, D. F., 1975, The invisible copper of cytochrome c oxidase pH and ATP dependence to its midpoint potential and its role in the oxygen reaction, Arch. Biochem. Biophys. 169:492–505.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, L., and Schubert, M. P., 1938, The theory of reversible two-step oxidation involving free radicals, Chem. Rev. 22:437.

    Article  CAS  Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Res. Ltd., Bodmin, Cornwall, England.

    Google Scholar 

  • Mitchell, P., 1975, Protonmotive Redox mechanism of the cytochrome b-c 1 complex in the respiratory chain: Protonmotive ubiquinone cycle, FEBS Lett. 56:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, P., 1972, Haem-haem interactions associated with ligand binding by cytochrome oxidase, Biochem. J. 128:98.

    Google Scholar 

  • Nicholls, P., and Chance, B., 1974, Cytochrome c oxidase, in: Molecular Mechanisms of Oxygen Activation, pp. 479–534, Academic Press, New York.

    Google Scholar 

  • Ohnishi, T., 1975, Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart, Biochim. Biophys. Acta 387:475–490.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, T., 1976, Studies of the mechanism of site I energy conservation, Eur. J. Biochem. 64:91–103.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, T., Winter, D. B., Lim, J., and King, T. E., 1973, Low temperature electron paramagnetic resonance studies on two iron-sulfur centers in cardiac succinate dehydrogenase, Biochem. Biophys. Res. Commun. 53:231–237.

    Article  CAS  Google Scholar 

  • Ohnishi, T., Lim, J., Winter, D. B., and King, T. E., 1976, Thermodynamic and EPR characteristics of a Hi PIP-type iron sulfur center in the succinate dehydrogenase of the respiratory chain, J. Biol. Chem. 251:2105–2109.

    PubMed  CAS  Google Scholar 

  • Owen, C. S., and Wilson, D. F., 1974, Control of respiration by the mitochondrial phosphorylation state, Arch. Biochem. Biophys. 161:581–591.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, D. B., and Wilson, G. S., 1971, Small volume redoxostat, Anal. Biochem. 40:392–400.

    Article  PubMed  CAS  Google Scholar 

  • Tiesjema, R. H., Muijsers, A. O., and van Gelder, B. F., 1973, Biochemical and biophysical studies on cytochrome c oxidase—Spectral and Potentiometric properties of the hemes and coppers, Biochim. Biophys. Acta 305:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Urban, P. F., and Klingenberg, M., 1969, On redox potentials of ubiquinone and cytochrome b in the respiratory chain, Eur. J. Biochem. 9:519–525.

    Article  PubMed  CAS  Google Scholar 

  • Vanderkooi, J., Erecinska, M., and Chance, B., 1973, Cytochrome c interaction with membranes. 1. Use of a fluorescent chromophore in the study of cytochrome c interaction with an artificial and mitochondrial membranes, Arch. Biochem. Biophys. 154:219–229.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., and Brocklehurst, E. S., 1973, Energy dependent changes in the cytochromes of the mitochondrial respiratory chain, Arch. Biochem. Biophys. 158:200–212.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., and Dutton, P. L., 1970a, Energy dependent changes in the oxidation-reduction potential of cytochrome b, Biochem. Biophys. Res. Commun. 39:59–64.

    Article  CAS  Google Scholar 

  • Wilson, D. F., and Dutton, P. L., 1970b, The oxidation-reduction potentials ofcytochrome a and a 3 in intact rat liver mitochondria, Arch. Biochem. Biophys. 136:583–584.

    Article  CAS  Google Scholar 

  • Wilson, D. F., and Dutton, P. L., 1972, Thermodynamic control of mitochondrial energy coupling, in: Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria (M. A. Mehlman and R. W. Hansen, eds.), pp. 39–49, Academic Press, New York.

    Google Scholar 

  • Wilson, D. F., and Erecinska, M., 1972, Thermodynamic relationships between the phosphate potential and oxidation-reduction potentials in the respiratory chain, in: Mitochondrial Biomembranes, pp. 119–132, Proc. 8th FEBS Meet., North-Holland, Amsterdam.

    Google Scholar 

  • Wilson, D. F., and Erecinska, M., 1975, Thermodynamic relationships among cytochrome b K , cytochrome b T , and ubiquinone in mitochondria, Arch. Biochem. Biophys. 167:116–128.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., and Leigh, J. S., Jr., 1972, Heme-heme interaction in cytochrome c oxidase in situ as measured by EPR spectroscopy, Arch. Biochem. Biophys. 150:154–163.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., Erecinska, M., Dutton, P. L., and Tsudzuki, T., 1970, The oxidation-reduction potentials of the iron-sulfur proteins in mitochondria, Biochem. Biophys. Res. Commun. 41:1273–1278.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., Erecinska, M., and Brocklehurst, E. S., 1972a, Chemical properties of cytochrome c oxidase in intact mitochondria, Arch. Biochem. Biophys. 151:180–187.

    Article  CAS  Google Scholar 

  • Wilson, D. F., Lindsay, J. G., and Brocklehurst, E. S., 1972b, Heme-heme interaction in cytochrome oxidase, Biochim. Biophys. Acta 256:277–286.

    Article  CAS  Google Scholar 

  • Wilson, D. F., Erecinska, M., Leigh, J. S., Jr., and Koppelman, M., 1972c, The properties of the mitochondrial succinate-cytochrome c reductase, Arch. Biochem. Biophys. 151:112–121.

    Article  CAS  Google Scholar 

  • Wilson, D. F., Dutton, P. L., and Wagner, M., 1973, Energy-transducing components in mitochondria respiration, Curr. Top. Bioenerg. 5:233–265.

    CAS  Google Scholar 

  • Wilson, D. F., Erecinska, M., and Dutton, P. L., 1974a, Thermodynamic relationships in mitochondrial oxidative phosphorylation, Annu. Rev. Biophys. Bioeng. 3:203–230.

    Article  CAS  Google Scholar 

  • Wilson, D. F., Stubbs, M., Oshino, N., and Erecinska, M., 1974b, Thermodynamic relationships between the mitochondrial oxidation-reduction reactions and cellular ATP levels in ascites tumor cells and perfused rat liver, Biochemistry 13:5305–5311.

    Article  CAS  Google Scholar 

  • Wilson, D. F., Owen, C. S., and Erecinska, M., 1977a, Regulation of mitochondrial respiration in intact tissues: A mathematical model, Adv. Exp. Med. Biol. 94:279–288.

    CAS  Google Scholar 

  • Wilson, D. F., Owen, C. S., and Holian, A., 1977b, Control of respiration in isolated mitochondria: Quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP] and [Pi], Arch. Biochem. Biophys. 181:164–171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Wilson, D.F. (1979). An Approach to the Study of Electron Transport Systems. In: Korn, E.D. (eds) Methods in Membrane Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0985-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0985-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0987-1

  • Online ISBN: 978-1-4684-0985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics