Skip to main content

Concanavalin A as A Quantitative and Ultrastructural Probe for Normal and Neoplastic Cell Surfaces

  • Chapter
Concanavalin A

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 55))

Abstract

Concanavalin A (Con A) has been popularly used as a cell surface probe for normal and neoplastic cells. Differences between normal fibroblasts and their transformed derivatives were examined using Con A agglutination, quantitative labeling with 125I-Con A and ultra-structural labeling with fluorescent- or ferritin-Con A. Con A agglutinates confluent-SV3T3 and 3T3 cells at midpoints of 20–60 and > 1,500–2,000 μg/ml, respectively, and sparse cells at 5–15 and 1,2001,500 μg/ml, respectively. Quantitative binding of 125I-Con A at 4°C (10 or 15 min) with saturating lectin concentrations does not indicate a difference in the number of Con A receptors on sparse or confluent 3T3 and SV3T3 cells similar to many publications, but contrary to Noonan and Burger (1973). Under these conditions of labeling, ferritin-Con A is not internalized, indicating absence of endocytosis. The lateral mobility of Con A receptors and their relative ability to be aggregated on the cell surface by Con A was investigated with fluorescent- and ferritin-Con A. The initial distribution of Con A receptors on 3T3, SV3T3 and MSV3T3 cells under conditions of labeling at low temperature (0–5°C) or to fixed cells was essentially randomly dispersed, but changes quickly to aggregated on SV3T3 and MSV3T3 (but not 3T3) after shifting the temperature to 20–37°C, indicating, in general, a greater relative mobility of Con A receptors on SV3T3 and MSV3T3 cells. The aggregated Con A receptors seem to be directly involved in cell agglutination because they are usually found at the sites of cell-to-cell contact during 10 min agglutination experiments with ferritin-Con A. When confluent-3T3 cells are labeled on monolayer with ferritin-Con A at 0–4°C, washed and then shifted to 20–37°C for 10–15 min prior to in situ embedding, two classes of Con A receptors can be identified. One class appears to have low relative mobility and is associated with the 3T3 cell’s extensive sub-plasma membrane microfilament network, while the other is capable of being aggregated and eventually endocytosed. On confluent-SV3T3 cells, only the latter class of receptors appears to be present, indicating a possible loss of cytoplasmic control over the distribution and mobility of lectin-binding sites on transformed cell surfaces.

Supported by N.C.I. contract CB-33879 from the Tumor Immunology Program and grant CA-75122, NSF grant P4B1719 from the Human Cell Biology Program and a grant from the Cancer Research Institute, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, B. B. L., and Goldstein, I. J. (1967). “Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels.” Biochim. Biophys. Acta. 147, 262.

    PubMed  CAS  Google Scholar 

  2. Arndt-Jovin, D. J., and Berg, P. (1971). “Quantitative binding of 125I-concanavalin A to normal and transformed cells.” J. Virol. 8, 716.

    PubMed  CAS  Google Scholar 

  3. Barbarese, E., Sauerwein, H., and Simkins, H. (1973). “Alteration in the surface glycoproteins of chick erythrocytes following transformation with erythroblastosis strain R virus.” J. Mem. BioZ. 13, 129.

    Article  CAS  Google Scholar 

  4. Becht, H., Rott, R., and Klenk, H. D. (1972). “Effect of concanavalin A on cells infected with enveloped RNA viruses.” J. Gen. ViroZ. 14, 1.

    Article  CAS  Google Scholar 

  5. Berlin, R. D., and Ukena, T. E. (1972). “Effect of colchicine and vinblastine on the agglutination of polymorphonuclear leucocytes by concanavalin A.” Nature New BioZ. 238, 120.

    Article  CAS  Google Scholar 

  6. Bretton, R., Wicker, R., and Bernhard, W. (1972). “Ultra-structural localization of concanavalin A receptors in normal and SV40-transformed hamster and rat cells.” Int. J. Cancer 10, 397.

    Article  PubMed  CAS  Google Scholar 

  7. Burger, M. M. (1969). “A difference in the architecture of the surface membrane of normal and virally transformed cells.” Proc. Nat. Acad. Sci. U. S. A. 62, 994.

    Article  CAS  Google Scholar 

  8. Burger, M. M. (1973). “Surface changes in transformed cells detected by lectins.” Fed. Proc. 32, 91.

    PubMed  CAS  Google Scholar 

  9. Cline, M. J., and Livingston, D. C. (1971). “Binding of 3Hconcanavalin A by normal and transformed cells.” Nature New BioZ. 232, 155.

    CAS  Google Scholar 

  10. Cuatrecasas, P. (1972). “Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells.” Biochemistry 12, 1312.

    Article  Google Scholar 

  11. Davis, W. C. (1972). “H-2 antigen on cell membranes: An explanation for the alteration of distribution by indirect label-ing techniques.” Science 175, 1006.

    Article  PubMed  CAS  Google Scholar 

  12. De Petris, S., and Raff, M. C. (1972). “Distribution of immunoglobulin on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy. Antibody-induced, temperature-dependent redistribution and its implications for membrane structure.” Europ. J. Irnmunol. 2, 524.

    Google Scholar 

  13. De Petris, S., Raff, M. C., and Mallucci, L. (1973). “Ligand-induced redistribution of concanavalin A receptors on normal, trypsinized and transformed fibroblasts.” Nature New Biol. 244, 275.

    Article  PubMed  Google Scholar 

  14. Edidin, M., and Fambrough, D. (1973). “Fluidity of the surface of cultured cell muscle fibers. Rapid lateral diffusion of marked surface antigens.” J. Cell BioZ. 57, 27.

    Article  CAS  Google Scholar 

  15. Edidin, M., and Weiss, A. (1972). “Antigen cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility.” Proc. Nat. Acad. Sci. U. S. A. 69, 2456.

    Article  CAS  Google Scholar 

  16. Frye, L. D., and Edidin, M. (1970). “The rapid inter-mixing of cell surface antigens after formation of mouse-human heterokaryons.” J. Cell Sci. 7, 319.

    PubMed  CAS  Google Scholar 

  17. Gantt, R. R., Martin, J. R., and Evans, V. J. (1969). “Agglutination of in vitro cultured neoplastic and non-neoplastic cell lines by a wheat germ agglutinin.” J. Nat. Cancer Inst. 42, 369.

    PubMed  CAS  Google Scholar 

  18. Garrido, J., Burglen, M.J., Samolyk, D., Wicker, R., and Bernhard, W. (1974). “Ultrastructural comparison between the distribution of concanavalin A and wheat germ agglutinin cell surface receptors of normal and transformed hamster and rat cell lines.” Cancer Res. 34, 230.

    PubMed  CAS  Google Scholar 

  19. Goto, M., Kataoka, Y., Goto, K., Yodoyama, T., and Sato, H. (1972). “Decrease in agglutinability of cultured tumor cells to concanavalin A at the plateau of cell growth.” Gann 63, 505.

    PubMed  CAS  Google Scholar 

  20. Hakomori, A. (1970). “Cell density-dependent changes of glycolipids in fibroblasts and loss of this response in the transformed cells.” Proc. Nat. Acad. Sci. U. S. A. 67, 1741.

    Article  CAS  Google Scholar 

  21. Hogg, N. M. (1974). “A comparison of membrane proteins of normal and transformed cells by the lactoperoxidase method.” Proc. Nat. Acad. Sci. U. S. A. 71, 489.

    Article  CAS  Google Scholar 

  22. Hsie, A. W., and Puck, T. T. (1971). “Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3’:5’-monophosphate and testosterone.” Proc. Nat. Acad. Sci. U. S. A. 68, 358.

    Article  CAS  Google Scholar 

  23. Hsie, A. W., Jones, C., and Puck, T. T. (1971). “Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3’:5’-monophosphate and hormones.” Proc. Nat. Acad. Sci. U. S. A. 68, 1648.

    Article  CAS  Google Scholar 

  24. Hynes, R. O. (1974). “Alteration of cell-surface proteins by viral transformation and by proteolysis.” Proc. Nat. Acad. Sci. U. S. A. 70, 3170.

    Article  Google Scholar 

  25. Inbar, M., and Sachs, L. (1969a). “Structural differences in sites on the surface membrane of normal and transformed cells.” Nature 233, 710.

    Article  Google Scholar 

  26. Inbar, M., and Sachs, L. (1969b). “Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells.” Proc. Nat. Acad. Sci. U. S. A. 63, 1418.

    Article  CAS  Google Scholar 

  27. Inbar, M., and Sachs, L. (1973). “Mobility of carbohydrate containing sites on the surface membrane in relation to the control of cell growth.” FEBS Lett. 32, 124.

    Article  PubMed  CAS  Google Scholar 

  28. Inbar, M., Ben-Bassat, H., and Sachs, L. (1971). “A specific metabolic activity on the surface membrane in malignant cell-transformation.” Proc. Nat. Acad. Sci. U. S. A. 68, 2748.

    Article  CAS  Google Scholar 

  29. Inbar, M., Ben-Bassat, H., Huet, C., Oseroff, A. R., and Sachs, L. (1973). “Inhibition of lectin agglutinability by fixation of the cell surface membrane.” Biochim. Biophys. Acta 311, 594.

    Article  PubMed  CAS  Google Scholar 

  30. Kaneko, I., Sato, H., and Ukita, T. (1973). “Effect of metabolic inhibitors on the agglutination of tumor cells by concanavalin A and Ricinus communis agglutinin.” Biochim. Biophys. Res. Comm. 50, 1087.

    Article  CAS  Google Scholar 

  31. Karnovsky, M. J., Unanue, E. R., and Leventhal, M. (1972). “Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties,” J. Exp. Med. 136, 907.

    Article  PubMed  CAS  Google Scholar 

  32. Kijimoto, S., and Hakomori, S. I. (1972). “Contact-dependent enhancement of net synthesis of Forssman glycolipid antigen and hematoside in NIL cells at the early stage of cell-to-cell contact.” FEBS Lett. 25, 38.

    Article  PubMed  CAS  Google Scholar 

  33. Lis, H., and Sharon, N. (1973). “The biochemistry of plant lectins (phytohemagglutinins).” Ann. Rev. Biochem. 43, 541.

    Article  Google Scholar 

  34. Liske, R., and Franks, D. (1968). “Specificity of the agglutinin in extracts of wheat germ.” Nature 217, 860.

    Article  PubMed  CAS  Google Scholar 

  35. McNutt, N. S., Culp, L. A., and Black, P. H. (1971). “Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study.” J. Cell BioZ. 50, 691.

    Article  CAS  Google Scholar 

  36. Martinez-Palomo, A., Wicker, R., and Bernhard, W. (1972). “Ultrastructural detection of concanavalin A surface receptors in normal and in polyoma-transformed cells.” Int. J. Cancer 9, 676.

    Article  PubMed  CAS  Google Scholar 

  37. Moscona, A. A. (1971). “Embryonic and neoplastic cell surfaces: Availability of receptors for concanavalin A and wheat germ agglutinin.” Science 171, 905.

    Article  PubMed  CAS  Google Scholar 

  38. Nicolson, G. L. (1971). “Difference in the topology of normal and tumor cell membranes as shown by different distributions of ferritin-conjugated concanavalin A on their surfaces.” Nature New BioZ. 233, 244.

    CAS  Google Scholar 

  39. Nicolson, G. L. (1972). “Topography of cell membrane concanavalin A-sites modified by proteolysis.” Nature New BioZ. 239, 193.

    CAS  Google Scholar 

  40. Nicolson, G. L. (1973a). “Neuraminidase ‘unmasking’ and the failure of trypsin to ‘unmask’ 8-D-galactose-like sites on erythrocyte, lymphoma and normal and virus-transformed fibroblast cell membranes.” J. Nat. Cancer Inst. 50, 1443.

    PubMed  CAS  Google Scholar 

  41. Nicolson, G. L. (1973b). “Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces.” Nature New BioZ. 243, 218.

    CAS  Google Scholar 

  42. Nicolson, G. L. (1973c). “The relationship of a fluid membrane structure to cell agglutination and surface topography.” Ser. HaematoZ. 6, 275.

    CAS  Google Scholar 

  43. Nicolson, G. L. (1973c). “The relationship of a fluid membrane structure to cell agglutination and surface topography.” Ser. HaematoZ. 6, 275.

    CAS  Google Scholar 

  44. Nicolson, G. L. (1973c). “The relationship of a fluid membrane structure to cell agglutination and surface topography.” Ser. HaematoZ. 6, 275.

    CAS  Google Scholar 

  45. Nicolson, G. L. (1973c). “The relationship of a fluid membrane structure to cell agglutination and surface topography.” Ser. HaematoZ. 6, 275.

    CAS  Google Scholar 

  46. Nicolson, G. L., and Blaustein, J. (1972). “Interaction of Ricinus communis agglutinin with normal and tumor cell surfaces.” Biochim. Biophys. Acta 266, 543.

    Article  PubMed  CAS  Google Scholar 

  47. Nicolson, G. L., and Lacorbiere, M. (1973). “Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus-or spontaneously-transformed murine fibroblasts.” Proc. Nat. Acad. Sci. U. S. A. 70, 1672.

    Article  CAS  Google Scholar 

  48. Nicolson, G. L., and Singer, S. J. (1974). “The distribution and asymmetry of saccharides on mammalian cell membrane surfaces utilizing ferritin-conjugated plant agglutinins as specific saccharide stains.” J. CeZZ Biol. 60, 236.

    Article  CAS  Google Scholar 

  49. Nicolson, G. L., and Yanagimachi, R. (1972). “Terminal saccharides on sperm plasma membranes: Identification by specific agglutinins.” Science 177, 276.

    Article  PubMed  CAS  Google Scholar 

  50. Noonan, K. D., and Burger, M. M. (1973). “The relationship of concanavalin A binding to lectin-initiated cell agglutination.” J. Cell Biol. 59, 134.

    Article  PubMed  CAS  Google Scholar 

  51. Oliver, J. M., Ukena, T. E., and Berlin, R. D. (1974). “Effects of phagocytosis and colchicine on the distribution of lectinbinding sites on cell surfaces.” Proc. Nat. Acad. Sci. U. S. A. 70, 394.

    Article  Google Scholar 

  52. Ozanne, B. and Sambrook, J. (1971). “Binding of radioactively labeled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells.” Nature New BioZ. 232, 156.

    Article  CAS  Google Scholar 

  53. Perdue, J. F. (1973). “The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts.” J. Cell BioZ. 58, 265.

    Article  CAS  Google Scholar 

  54. Perdue, J. F. (1973). “The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts.” J. Cell BioZ. 58, 265.

    Article  CAS  Google Scholar 

  55. Pinto da Silva, P. (1972). “Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation.” J. Cell Biol. 53, 777.

    Article  Google Scholar 

  56. Poste, G., and Reeve, P. (1972), “Agglutination of normal cells by plant lectins following infection with non-oncogenic viruses.” Nature New BioZ. 237, 113.

    Article  CAS  Google Scholar 

  57. Poste, G. (1975). This book, p. 117.

    Google Scholar 

  58. Rosenblith, J. Z., Ukena, T. E., Yin, H. H., Berlin, R. D., and Karnovsky, M. J. (1973). “A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts.” Proc. Nat. Acad. Sci. U. S. A. 70, 1625.

    Article  CAS  Google Scholar 

  59. Roth, S., and White, D. (1972). “Intercellular contact and cell-surface galactosyl transferase activity.” Proc. Nat. Acad. Sci. U. S. A. 69, 485.

    Article  CAS  Google Scholar 

  60. Sela, B., Lis, H., Sharon, N., and Sachs, L. (1970). “Different locations of carbohydrate-containing sites in the surface membrane of normal and transformed mammalian cells.” J. Mem. Biol. 3, 267.

    Article  CAS  Google Scholar 

  61. Sela, B., Lis, H., Sharon, N., and Sachs, L. (1971). “Quantitation of N-acetyl-D-galactosamine-like sites on the surface membrane of normal and transformed mammalian cells.” Biochim. Biophys. Acta 249, 564.

    Article  PubMed  CAS  Google Scholar 

  62. Taylor, R., Duffus, P., Raff, M., and de Petris, S. (1971). “Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody.” Nature New Biol. 233, 225.

    Article  PubMed  CAS  Google Scholar 

  63. Tevethia, S., Lowry, S., Rawls, W., Melnick, J., and McMillan, V. (1972). “Detection of early cell surface changes in Herpes simplex virus by agglutination with concanavalin A.” J. Gen. Virol. 15, 93.

    Article  PubMed  CAS  Google Scholar 

  64. Tomita, M., Osawa, T., Sakurai, Y. and Ukita, T. (1970). “On the surface of murine-ascites tumors. I. Interactions with various phytoagglutinins.” Int. J. Cancer 6, 283.

    Article  PubMed  CAS  Google Scholar 

  65. Trowbridge, I. (1974). Personal communication.

    Google Scholar 

  66. Uhlenbruck, G., and Herrmann, W. P. (1972). “Agglutination of normal, coated and enzyme-treated human spermatozoa with heterophile agglutinins.” Vox Sang. 23, 444.

    Article  PubMed  CAS  Google Scholar 

  67. Vesely, P., Entlicher, G., and Kocourek, J. (1972), “Pea phytohemagglutinin selective agglutination of tumour cells.” Experientia 15, 1085.

    Article  Google Scholar 

  68. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradly, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M. (1971). “Microfilaments in cellular and developmental processes.” Science 171, 135.

    Article  PubMed  CAS  Google Scholar 

  69. Yahara, I., and Edelman, G. M. (1972). “Restriction of the mobility of lymphocyte immunoglobulin receptors on concanavalin A,” Proc. Nat. Acad. Sci. U. S. A. 69, 608.

    Article  CAS  Google Scholar 

  70. Yahara, I., and Edelman, G. M. (1973). “Modulation of lymphocyte receptor redistribution by concanavalin A, anti-mitotic agents and alterations of pH.” Nature 236, 152.

    Article  Google Scholar 

  71. Yin, H. H., Ukena, T. E,, and Berlin, R. D. (1972). “Effect of colchicine and vinblastine on the agglutination of virus-transformed cells by concanavalin A.” Science 178, 867.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Nicolson, G.L. (1975). Concanavalin A as A Quantitative and Ultrastructural Probe for Normal and Neoplastic Cell Surfaces. In: Chowdhury, T.K., Weiss, A.K. (eds) Concanavalin A. Advances in Experimental Medicine and Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0949-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0949-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0951-2

  • Online ISBN: 978-1-4684-0949-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics