Skip to main content

Interactions of Mercury Compounds With Wool and Related Biopolymers

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 48))

Abstract

Mercury compounds, which constitute environmental health hazards, can be taken up by wool, and other keratins and their derivatives, and by other agricultural products and by-products. Wool can bind mercury to about half of its weight from concentrated mercuric chloride solutions and can quickly recover a substantial proportion from very low, but biologically important, concentrations in the parts-per-billion range. It binds both naturally occurring and manufactured inorganic and organic mercury compounds. Binding capacity can be further increased by chemical modification, binding efficiency, by nondestructive recovery. Factors that influence binding of mercury compounds to keratins are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Table 1

  • Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, X. M., Khalidi, A., Al-Rawi, N. Y., Tikriti, S., Dhahir, H. I., Clarkson, T. W., Smith, J. C., and Doherty, R. A. (1973). Methylmercury poisoning in Iraq. Science 230, 131.

    Google Scholar 

  • Bishop, J. E. Wall Street Journal (December 14, 1970) Pacific Coast Edition 83(117):1, 9.

    Google Scholar 

  • Bouveng, H. O., and Ullman, P. “Reduction of Mercury in Waste Waters from Chlorine Plants” (1969). Chlorine Institute Pamphlet Number R-10. New York.

    Google Scholar 

  • Durum, W. H., Hem, J. D., and Heidel, S. G. (1971) “Reconnaissance of Selected Minor Elements in Surface Waters of the U.S. October 1970,” U.S.D.I. Geological Survey Circular 643, Washington.

    Google Scholar 

  • Jervis, R. E. Cited in Chem. Eng. News, October 8, 1970, page 8.

    Google Scholar 

  • Löfroth, G. (1969) “Methylmercury.” Chlorine Institute Pamphlet Number R-101, New York.

    Google Scholar 

  • Miettinen, J. K. “On the methylmercury problem and the present status of the mercury investigations by the Radiochemistry Department.” Presented at the Finnish Chemists Meeting in Helsinki, October 14–16, 1969; transcript from the Chlorine Institute, New York.

    Google Scholar 

  • Monier-Williams, G. W. “Trace Elements in Foods.” Wiley, New York, 1949.

    Google Scholar 

  • New York Times Service as reported in the San Francisco Chronicle, December 16, 1970, page 1.

    Google Scholar 

  • Nord, P. J., Kadaba, M. P., Sorenson, J. R. J. (1973) Mercury in human hair. A study of the residents of Los Alamos, N.M., and Pasadena, California by cold vapor atomic absorption spectrophotometry. Arch. Environ. Health 27, 40–41.

    PubMed  CAS  Google Scholar 

  • D. Robertson as quoted by Bishop in the article cited above. San Francisco Chronicle, December 18, 1970, page 3.

    Google Scholar 

  • Sillen, L. G. (1973) How has sea water got its present composition? Svensk Kern. Tid. 75, 161–177.

    Google Scholar 

  • Speakman, J. B., and Coke, C. E. (1939) The action of mercurie chloride on wool and hair. Trans. Faraday Soc. 35, 246–262.

    Article  CAS  Google Scholar 

  • Spinelli, J., Steinberg, M. A., Miller, R., Hall, A., and Lehman, L. (1973). Reduction of mercury with cysteine in comminuted halibut and hake fish protein concentrate. J. Agr. Food Chem. 21, 264–268.

    Article  CAS  Google Scholar 

  • United States Department of the Interior News Release, October 4, 1970. United States Public Health Service. “Drinking Water Standards.” USPHS Publication 956. Washington, 1962.

    Google Scholar 

  • WHO/FAO as reported by Jervis and Bishop in the articles cited and cited by R. Christoll, L. G. Erwall, K. Ljunggren, B. Sjöstrand, and T. Westermark, “Methods of activation analysis for mercury in the biosphere and in foods.” Presented at the 1965 International Conference on Modern Trends in Activation Analysis. College Station, Texas.

    Google Scholar 

References

  • Anelli, G., Pelosi, P. and Galoppini, C. (1973). Influence of mercury on the amino acid composition of tobacco leaves. Agr. Biol. Chem., 37, 1579.

    Article  CAS  Google Scholar 

  • Arnon, R. and Shapira, E. (1969). Crystalline papain derivative containing an intramolecular mercury bridge. J. Biol. Chem., 244, 1033.

    PubMed  CAS  Google Scholar 

  • Avny, Y., Leonov, D. and Zilkha, A. (1972). Adsorption of heavy metal salts by cotton fabrics containing polyethelene and polypropylene sulfide. Israel J. Chem., 11, No 1, 53–61.

    Google Scholar 

  • Brady, P. R., Freeland, G. N., Hine, R. J. and Hoskinson, R. M. (1973). CSIRO Division of Textile Industry, Victoria, Australia, private communication.

    Google Scholar 

  • Brooks, P. and Davidson, N. (1966). Mercury (II) complexes of imidazole and histidine. J. Am. Chem. Soc., 82, 2118.

    Article  Google Scholar 

  • Brown, P. R. and Edwards, J. O. (1969). Reaction of disulfides with mercuric ions. Biochemistry, 8, 1200.

    Article  PubMed  CAS  Google Scholar 

  • Fish, R. H., Scherer, J. R., Marshall, E. C. and Kint, S. (1972). A column Chromatographie and laser Raman Spectroscopy study of the interaction of mercuric chloride with wool. Chemosphere, No 6, 267–272.

    Article  Google Scholar 

  • Fish, R. H. and Friedman, M. (1972). A novel mercury (II) chloride complex of S-β-(2-pyridylethyl)-L-cysteine. J. Chem. Soc. Chem. Commun., 812.

    Google Scholar 

  • Friberg, L. (1972). “Mercury in the Environment.” CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Friedman, M. and Waiss, A. C., Jr. (1972). Mercury uptake by agricultural products and by-products. Environ. Sci. Technol., 6, 457–458.

    Article  CAS  Google Scholar 

  • Friedman, M. (1973). “Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins,” Pergamon Press, Oxford, England and Elmsford, New York.

    Google Scholar 

  • Friedman, M., Harrison, C. S., Ward, W. H. and Lundgren, H. P. (1973). Sorption behaviour of mercuric and methylmercuric salts on wool, (a) J. Applied Polym. Sci., 17; 377–390, (b) presented at the Division of Water, Air, and Waste Chemistry, 161st American Chemical Society Meeting, Los Angeles, California, March 28-April 2, 1971. Preprints, (1971). 11, No 1, 109-14.

    Article  CAS  Google Scholar 

  • Friedman, M. and Masri, M. S. (1973). Sorption behaviour of mercuric salts on chemically modified wools and polyamino acids. J. Applied Polym. Sci., 17, 2183–2190.

    Article  CAS  Google Scholar 

  • Goldwater, L. J. (1971). Mercury in the environment. Scientific American, 224, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Leach, S. J. (1960). The reaction of the thiol and disulfide groups with mercuric chloride and methylmercuric iodide. Australian, J. Chem., 13, 520–547

    Article  CAS  Google Scholar 

  • Leach, S. J., (1966). “A laboratory Manual of Analytical Methods of Protein Chemistry,” P. Alexander and H. P. Lundgren, eds., Vol. 4, Chapter 1, Permagon Press, New York, N. Y.

    Google Scholar 

  • Lee, S. Y. and Richardson, T. (1973). Use of thiolated and aminoethyl cellulose to remove mercury bound to solubilized fish protein. J. Milk Food Sci., 36, 267–273.

    CAS  Google Scholar 

  • Malyuga, D. P. (1964). “Biochemical Methods of Prospecting.” Authorized translation from the Russian edition (1963). Consultants Bureau, New York, p. 69

    Google Scholar 

  • Masri, M. S. and Friedman, M. (1972). Mercury uptake by polyaminecarbohydrates. Environ. Sci. Technol., 6(8), 745–746.

    Article  CAS  Google Scholar 

  • Masri, M. S. and Friedman, M. (1973). Competitive binding of mercuric chloride in dilute solutions by wool and polyethylene or glass containers. Environ. Sci. Technol., 7, 951–953.

    Article  CAS  Google Scholar 

  • Masri, M. S., Reuter, F. W. and Friedman, M. (1974). Binding of metal cations by natural substances. J. Applied Polym. Sci., 18, 675–681. Cf. also, Text. Res. J. (1974), 44, 298-300.

    Article  Google Scholar 

  • Michelsen, D. L. (1973). Virginia Polytechnic Institute, Blacksburg, Virginia, private communication.

    Google Scholar 

  • Miller, M. W. and Clarkson, T. W. (1973). “Mercury, Mercurials, and Mercaptans.” C. C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Muzzarelli, R. A. A. and Isolati, A. (1971). Methylmercury acetate removal from waters by chromatography on chelating polymers. Water, Air, and Soil Pollution, 1, 65–71.

    Article  CAS  Google Scholar 

  • Natusch, D. F. S. and Porter, L. J. (1971). Proton magnetic resonance studies of metal-complex formation in some sulphur-containing α-amino acids. J. Chem. Soc., A, 2527.

    Google Scholar 

  • Ramachandran, L. K. and Witkop, B. (1964). The interaction of mercuric acetate with indoles, tryptophan, and proteins. Biochemistry, 3, 1603–1616.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E. J. and Rowland, S. P. (1973). Removal of mercury from aqueous solutions by nitrogen-containing chemically modified cotton. Environ. Sci. Technol., 7, 552–555.

    Article  PubMed  CAS  Google Scholar 

  • Scatchard, G. (1949). Ann. N. Y. Acad. Sci., 51(4), 660.

    Article  CAS  Google Scholar 

  • Speakman, J. B. and Coke, C. E. (1939). Trans. Faraday Soc., 35, 246.

    Article  CAS  Google Scholar 

  • Sikorski, J., Simpson, W. S. and Woods, H. H. (1960). Studies of the reactivity of keratins with heavy metals. Proceedings of the 4th International Conference on Electron Microscopy G. Mollenstadt, ed., Springer Verlag, Berlin, Vol. 1, p. 707.

    Google Scholar 

  • Simpson, W. S. (1973) Private Communication.

    Google Scholar 

  • Swanson, C. L., Wing, R. E., Doane, W. M. and Russell, C. R. (1973). Mercury removal from waste water with starch-xanthate-cationic polymer complex. Environ. Sci. Technol., 7, 614–19.

    Article  CAS  Google Scholar 

  • Tratnyek, J. P. (1972). “Waste Wool as a Scavenger for Mercury Pollution in Waters.” U.S. Government Printing Office, Washington, D.C. Chem. Abstracts, 78, No 61931.

    Google Scholar 

  • Vickerstaff, T. (1954). “The Physical Chemistry of Dyeing.” Second Edition. Interscience, New York.

    Google Scholar 

  • Webb, J. L. (1966). “Enzyme and Metabolic Inhibitors,” Vol. 2, Academic Press, New York, N. Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Friedman, M., Masri, M.S. (1974). Interactions of Mercury Compounds With Wool and Related Biopolymers. In: Friedman, M. (eds) Protein-Metal Interactions. Advances in Experimental Medicine and Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0943-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0943-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0945-1

  • Online ISBN: 978-1-4684-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics