Metal-Albumin-Amino Acid Interactions: Chemical and Physiological Interrelationships

  • R. I. Henkin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 48)


Following the introduction and passage of transition metal ions such as copper, zinc, cadmium and nickel into appropriate portions of the gastrointestinal tract of man and other animals absorption across the gut mucosa occurs leading to the introduction of these metals into the blood. At this point, due to the functional characteristics of these metals, they appear bound to various ligands and transported to various tissues.


Human Serum Albumin Formation Constant Serum Zinc Normal Human Serum Acid Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, A. (1950). Quantitative studies of the avidity of naturally occurring substances for trace metals. 1. Amino-acids having only two ionizing groups. Biochem. J. 47:531–538.PubMedGoogle Scholar
  2. Albert, A. (1952). Quantitative studies of the avidity of naturally occurring substances for trace metals. 2. Amino-acids having three ionizing groups. Biochem. J. 50:690–697.PubMedGoogle Scholar
  3. Beam, A.G. and Kunkel, H.G. (1954). Localization of Cu64 in serum fractions following oral administration: an alteration in Wilson’s disease. Proc. Soc. Exptl. Biol. Med. 85:44–48.Google Scholar
  4. Bjerrum, J. (1950). On the tendency of the metal ions toward complex formation. Chem. Rev. 46:381–401.CrossRefGoogle Scholar
  5. Boyett, J.D. and Sullivan, J.F. (1970). Distribution of proteinbound zinc in normal and cirrhotic serum. Metabolism 19:148–157.PubMedCrossRefGoogle Scholar
  6. Boyett, J.D. and Sullivan, J.F. (1971). The effect of oral zinc sulfate on protein-bound zinc in serum. Ala. J. Med. Sci. 8:124–131.PubMedGoogle Scholar
  7. Breslow, E. (1964). Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J. Biol. Chem. 239:3252–3259.PubMedGoogle Scholar
  8. Brigham, M.P. Stein, W.H. and Moore, S. (1960). The concentrations of cysteine and cystine in human blood plasma. J. Clin. Invest. 39:1633–1638.PubMedCrossRefGoogle Scholar
  9. Cartwright, G.E. and Wintrobe, M.M. (1964). Copper metabolism in normal subjects. Am. J. Clin. Nutr. 14:224–232.PubMedGoogle Scholar
  10. Christian, G.D. (1969). Medicine, trace elements, and atomic absorption spectroscopy. Anal. Chem. 41:24A–40A.PubMedCrossRefGoogle Scholar
  11. Eichhorn, M.M. (1970). Data on the naturally-occurring amino acids. In H.A. Sober, Handbook of Biochemistry, 2nd ed., Chemical Rubber Co., Cleveland, Ohio, pps. B3–B49.Google Scholar
  12. Felig, P., Brown, W.V., Levine, R.A. and Klatskin, G. (1970). Glucose homeostasis in viral hepatitis. New Engl. J. Med. 283:1436–1440.PubMedCrossRefGoogle Scholar
  13. Fritze, K. and Gietz, R.J. (1968). Contamination problems in trace analysis or protein bound metals. J. Radioanal. Chem. 1:265–268.CrossRefGoogle Scholar
  14. Giroux, E.L. and Henkin, R.I. (1972). Competition for zinc among serum albumin and amino acids. Biochim. Biophys. Acta 273:64–72.PubMedCrossRefGoogle Scholar
  15. Giroux, E.L. and Henkin, R.I. (1972a). Macromolecular ligands of exchangeable copper, zinc and cadmium in human serum. Bioinorg. Chem. 2:125–133, 1972.CrossRefGoogle Scholar
  16. Gubler, C.J., Lahey, M.E., Cartwright, G.E. and Wintrobe, M.M. (1953). Studies on copper metabolism. IX. The transportation of copper in blood. J. Clin. Invest. 32:405–414.PubMedCrossRefGoogle Scholar
  17. Gurd, F.R.N. and Goodman, D.S. (1952). Preparation and properties of serum and plasma proteins. XXXII. The interaction of human serum albumin with zinc ions. J. Amer. Chem. Soc. 74:670–675.CrossRefGoogle Scholar
  18. Hallman, P.S., Perrin, D.D. and Watt, A.E. (1971). The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids present in human blood plasma. Biochem. J. 121:549–555.PubMedGoogle Scholar
  19. Hamilton, P.B. (1968). Free amino acids a in blood plasma of newborn infants and adults. In H. A. Sober, Handbook of Biochemistry, 1st ed., Chemical Rubber Co., Cleveland, Ohio, pp. B55.Google Scholar
  20. Harris, D.I.M. and Sass-Kortsak (1967). The influence of amino acids on copper intake by rat liver slices. J. Clin. Invest. 46:659–667.PubMedCrossRefGoogle Scholar
  21. Henkin, R.I. (1971). Newer aspects of copper and zinc metabolism. In Mertz, W. and Cornatzer, W.E. Newer Trace Metals and Nutrition, Marcel Dekker, N.Y., pps. 255–311.Google Scholar
  22. Henkin, R.I., Marshall, J.R. and Meret, S. (1971). Maternal-fetal metabolism of copper and zinc at term. Am. J. Obstet. Gynecol. 110:131–134.PubMedGoogle Scholar
  23. Henkin, R.I., Keiser, H.R. and Bronzert, D. (1972). Histidine dependent zinc loss, hypogeusia, anorexia and hyposmia. J. Clin. Invest. 51:44a.Google Scholar
  24. Henkin, R.I. and Smith, F.R. (1972). Zinc and copper metabolism in acute viral hepatitis. Amer. J. Med. Sci. 264:401–409.PubMedCrossRefGoogle Scholar
  25. Henkin, R.I., Schulman, J.D., Schulman, C.B. and Bronzert, D.A. (1973). Changes in total, nondiffusible, and diffusible plasma zinc and copper during infancy. J. Ped. 82:831–837.CrossRefGoogle Scholar
  26. Henkin, R.I. (1974). Growth hormone dependent changes in zinc and copper metabolism in man. In Hoekstra, W.G., Suttie, J.W., Ganther, H., and Mertz, W. Trace Elements in Man and Animals II, University Press, Baltimore Md., Chapter 92 (In press).Google Scholar
  27. Henkin, R.I. (1974a). On the role of adrenocorticosteroids in the control of zinc and copper metabolism. In Hoekstra, W.G., Suttie, J.W., Ganther, H. and Mertz, W. Trace Elements in Man and Animals II, University Press, Baltimore, Md., Chapter 91 (In press).Google Scholar
  28. Himmelhoch, S.R., Sober, H.A., Vallee, B.L., Peterson, E.A. and Fuwa, K. (1966). Spectrographic and Chromatographie resolution of metalloproteins in human serum. Biochemistry 5:2523–2530.PubMedCrossRefGoogle Scholar
  29. Imbrus, H.R., Cholak, J., Miller, L.H. and Sterling, T. (1963). Boron, cadmium and nickel in blood and urine. Arch. Environ. Health 6:286–295.Google Scholar
  30. Jammers, W. and Catsch, A. (1967). Isotopischer aus tausch von zink zwischen proteinen und polyamino-polycarboyIsäuren. Naturwissenschaften 54:588.PubMedCrossRefGoogle Scholar
  31. Klotz, I.M., Urquhart, J.M. and Kiess, H.A. (1952). Interactions of metal ions with the sulfhydryl group of serum albumin. J. Am. Chem. Soc. 74:5537–5538.CrossRefGoogle Scholar
  32. Kubota, J., Lazar, A. and Losee, F.L. (1968). Copper, zinc, cadmium and lead in human blood from 19 locations In the United States. Arch. Environ. Health 16:788–793.PubMedGoogle Scholar
  33. LaDu, B.N. (1966). Histidinemia. In Stanbury, J.B., Wyngaarden, J.B. and Fredrickson, D.S., The Metabolic Basis of Inherited Disease, 2nd Ed., McGraw-Hill, N.Y., pps. 366–375.Google Scholar
  34. Lau, S.J. and Sarkar, B. (1971). Ternary coordination complex between human serum albumin, copper (II) and L-histidine. J. Biol. Chem. 246:5938–5943.PubMedGoogle Scholar
  35. Li, N.C. and Manning, R.A. (1955). Some metal complexes of sulfurcontaining amino acids. J. Am. Chem. Soc. 77:5225–5228.CrossRefGoogle Scholar
  36. Lifschitz, M.D. and Henkin, R.I. (1971). Circadian variation in copper and zinc in man. J. Appl. Physiol. 31:88–92.PubMedGoogle Scholar
  37. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  38. Maley, L.E. and Mellor, D.P. (1950). Stability of some metal complexes of histidine. Nature 165:453.CrossRefGoogle Scholar
  39. McConnell, S.D. and Henkin, R.I. (1974). Altered preference for sodium chloride, anorexia and changes in plasma and urinary metabolism in rats fed a zinc deficient diet. J. Nutrition (in press).Google Scholar
  40. Meret, S. and Henkin, R.I. (1971). Simultaneous direct estimation by atomic absorption spectrophotometry of copper and zinc in serum, urine, and cerebrospinal fluid. Clin. Chem. 17:369–373.PubMedGoogle Scholar
  41. Monk, C.D. (1951). Electrolytes in solutions of amino acids. Part IV-Dissociation constants of metal complexes of glycine, alanine and glycylglycine from pH titrations. Trans. Farnday Soc. 47:297–302.CrossRefGoogle Scholar
  42. Neumann, P.Z. and Sass-Kortsak, A. (1967). The state of copper in human serum: Evidence for an amino acid-bound fraction. J. Clin. Invest. 46:646–658.PubMedCrossRefGoogle Scholar
  43. O’Sullivan, W.J. (1969). Stability Constants of Metal Complexes. In Dawson, R.M.C., Elliott, D.C., Elliott, W.H. and Jones, K.M. Data for Biochem. Res. 2nd Ed., Oxford University Press, N.Y. p. 423.Google Scholar
  44. Parisi, A.F. and Vallee, B.L. (1970). Isolation of a zinc α2-macro-globulin from human serum. Biochemistry 9:2421–2426.PubMedCrossRefGoogle Scholar
  45. Perkins, D.J. (1952). A study of the amino-acid complexes formed by metals of Group II of the periodic classification. Biochem. J. 51:487–490.PubMedGoogle Scholar
  46. Perkins, D.J. (1964). Zn2+ binding to poly L-glutamic acid and human serum albumin. Biochim. Biophys. Acta. 86:635–663.PubMedCrossRefGoogle Scholar
  47. Peters, J., Jr. (1960). Interaction of one mole of copper with the alpha amino group of bovine serum albumin. Biochim. Biophys. Acta. 39:546–547.PubMedCrossRefGoogle Scholar
  48. Peters, T., Jr., and Blumenstock, F.A. (1967). Copper-binding properties of bovine serum albumin and its amino-terminal peptide fragment. J. Biol. Chem. 242:1574–1578.PubMedGoogle Scholar
  49. Porter, E.J. and Waters, W.J. (1966). A rapid micromethod for measuring the reserve albumin binding capacity in serum from newborn infants with hyperbilirubinemia. J. Lab. Clin. Med. 67:660–668.Google Scholar
  50. Prasad, A.S. and Oberleas, D. (1968). Zinc in human serum: evidence for an amino acid-bound fraction. J. Lab. Clin. Med. 72:1006.Google Scholar
  51. Prasad, A.S. and Oberleas, D. (1970). Binding of zinc to amino acids and serum proteins in vitro. J. Lab. Clin. Med. 76:416–425.PubMedGoogle Scholar
  52. Rubini, M.E., Montalvo, G., Lockhart, C.P. and Johnson, C.R. (1961). Metabolism of zinc-65. Amer. J. Physiol. 200:1345–1348.PubMedGoogle Scholar
  53. Sarkar, B., and Kruck, T.P.A. (1966). Copper-amino acid complexes in human serum. In Peisach, J., Aisen, P. and Blumberg, W.E., The Biochemistry of Copper, Academic Press, N.Y., p. 183–196.Google Scholar
  54. Sarkar, B. and Wigfield, Y. (1968). Evidence for albumin-Cu (II)-amino acid ternary complex. Can. J. Biochem. 46:601–607.PubMedCrossRefGoogle Scholar
  55. Schroeder, H.A. and Nason, A.P. (1971). Trace-element analysis in clinical chemistry. Clin. Chem. 17:461–474.PubMedGoogle Scholar
  56. Slavik, M., Danilson, D., Reiser, E.R. and Henkin, R.I. (1973a). Alterations in metabolism of copper and zinc after administration of 6-azauridine triacetate. Biochem. Pharm. 22:2349–2352.PubMedCrossRefGoogle Scholar
  57. Slavik, M., Lovenberg, W., and Reiser, U.R. (1973). Changes in serum and urine amino acids in patients with progressive systemic sclerosis treated with 6-azauridine triacetate. Biochem. Pharm. 22:1295–1300.PubMedCrossRefGoogle Scholar
  58. Smith, H.W. (1956). Principles of Renal Physiology, Oxford University Press, N.Y., p. 30.Google Scholar
  59. Soupart, P. (1959). L’aminoacidurie de la grossesse. Ann. Soc. R. Sci. Med. Nat. Brux. 12:105–182.Google Scholar
  60. Steinbach, M., Audran, R., Reuge, C. and Blatrix, C. (1966). Etude d’une d-globuline contenant du zinc: la proteine. In H. Peeters Protides of the Biological Fluids, Elsevier, Amsterdam, pps. 185–188.Google Scholar
  61. Suso, F.A. and Edwards, H.M., Jr. (1971). Binding capacity of intestinal mucosa and blood plasma for zinc. Proc. Soc. Exp. Biol. Med. 137:306–309.PubMedGoogle Scholar
  62. Tanford, C. (1952). The effect of pH on the combination of serum albumin with metals. J. Am. Chem. Soc. 74:211–215.CrossRefGoogle Scholar
  63. Tsangaris, J.M., Chang, J.W. and Martin, R.B. (1969). Cupric and nickel ion interactions with proteins as studied by circular dichroism. Arch. Biochem. Biophys. 130:53–58.PubMedCrossRefGoogle Scholar
  64. Vallee, B.L., Wacker, W.E.C., Bartholomay, A.F. and Robin, E.D. (1956). Zinc metabolism in hepatic dysfunction. I. Serum zinc concentrations in Laënnec’s cirrhosis and their validation by sequential analysis. New Eng. J. Med. 255:403–408.PubMedCrossRefGoogle Scholar
  65. Vallee, B.L., Wacker, W.E.C., Bartholomay, A.F. and Hock, F.L. (1957). Zinc metabolism in hepatic dysfunction. II. Correlation of metabolic patterns with biochemical findings. New Eng. J. Med. 257:1055–1065.PubMedCrossRefGoogle Scholar
  66. van den Hamer, C.J.A., Muvall, A.G., Scheinberg, I.H., Hickman, J. and Ashwell, G. (1970). Physical and chemical studies on ceruloplasmin IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem. 245:4397–4402.Google Scholar
  67. Vessel, E.S. and Beam, A.G. (1957). Localization of lactic acid dehydrogenose activity in serum fractions. Proc. Soc. Exp. Biol. Med. 94:96–99.Google Scholar
  68. Vikbladh, I. (1951). Studies on zinc in blood. Scan. J. Clin. Lab. Invest. 3, Suppl. 2:1–74.Google Scholar
  69. Walshe, J.M. (1953). Disturbances of aminoacid metabolism following liver injury. Quart. J. Med. 22:483–505.PubMedGoogle Scholar
  70. Wintrobe, M.M., Cartwright, G.E. and Gubler, C.J. (1953). Studies of the function and metabolism of copper. J. Nutr. 50:395–419.PubMedGoogle Scholar
  71. Wolff, H.P. (1956). Unterschungen zur pathophysiologie des zinkstoffwechsels. Klin. Wochenschr. 34:409–418.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. I. Henkin
    • 1
  1. 1.Section on NeuroendocrinologyNational Heart and Lung InstituteBethesdaUSA

Personalised recommendations