The Evolution of Metals as Essential Elements [with special reference to iron and copper]

  • Earl Frieden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 48)


The past few years have witnessed exciting progress in our understanding of the elements required for the growth and survival of the higher animal. As anticipated, these new discoveries have been exclusively among the trace elements, those elements which in minute quantities are essential for growth and development. As shown in Table I, after the discovery of the requirement for cobalt in 1935, there was a hiatus of about two decades before the essentiality of molybdenum (1953), chromium (1957) and selenium (1959) was confirmed. This was the end of an era in trace element research. From here on a major change in the research technique had to be devised. The animals, their food and their entire environment had to undergo a complete trace element decontamination, using special plastic houses, highly purified diets and filtered air. After a decade of painstaking research, Dr. Klaus Schwarz of the Veterans Administration and others added three new elements to the essential list: fluorine, tin and vanadium. In 1972, Dr. Edith Carlisle, University of California, Los Angeles, proved that silicon also was required for the growth and development of chicks. We now know that at least twenty-five of the 96 elements found on earth are required for some form of life (Figure 1; see also Table III).


Iron Metabolism Copper Protein Terminal Oxidase Copper Enzyme Aerobic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brady, F., Monaco, M. E., Forman, H. J., Schutz, G. and Feigelson, P. (1972). J. Biol. Chem., 247, 7915.PubMedGoogle Scholar
  2. Bryce, C. F. A. and Crichton, R. R. (1973). Biochem. J., 133, 301.PubMedGoogle Scholar
  3. Butler, E., (1971). Physiology and Biochemistry of the Domestic Fowl, vol. 2 (ed. by D. J. Bell and B. M. Freeman) Acad. Press N. Y.Google Scholar
  4. Calvin, M. (1969). Chemical Evolution, Oxford Univ. Press, N. Y.Google Scholar
  5. Carlisle, E. (1972). Science, 178, 619.PubMedCrossRefGoogle Scholar
  6. Cavallini, D., Supre, S., Scandurra, R., Graziani, M. T. and Cotta-Rasmusino, F. (1968). Europ. J. Biochem., 4, 209.PubMedCrossRefGoogle Scholar
  7. Chance, B., Yonetani, T. and Mildvan, A. S. (Eds.) (1971). Probes of structure and function of macromolecules and membranes, 2, Academic Press, N. Y., p. 575.Google Scholar
  8. Chou, W. S., Savage, J. E. and O’Dell, B. L. (1969). J. Biol. Chem., 244, 5785.PubMedGoogle Scholar
  9. Frieden, E. and Kent, A. B. (1974). in press.Google Scholar
  10. Frieden, E. (1973). Nutr. Reviews, 31, 41.CrossRefGoogle Scholar
  11. Frieden, E. (1972). Sci. Amer., 227, 52.PubMedCrossRefGoogle Scholar
  12. Frieden, E. (1971). Adv. in Chem. Series, Bioinorg. Chem., Am. Chem. Soc.Google Scholar
  13. Frieden, E. (1963). in Horizons in Biochemistry (Ed. by M. Kasha and B. Pullman).Google Scholar
  14. Frieden, E. and Kent, A. B. (1974). Int. Embyrological Congress, Sorrento, Italy.Google Scholar
  15. Frieden, E. and Osaki, S. (1974). This volume.Google Scholar
  16. Frieden, E., Osaki, S. And Kobayashi, H. (1965). J. Gen. Physiol., 49, 213.PubMedCrossRefGoogle Scholar
  17. Gaffron, H. (1960). Persepctives Biol. Med. III, 163.Google Scholar
  18. Goldberg, E. D. (1963). in The Sea (ed. by M. N. Hill), p. 4–5, J. Wiley, N. Y.Google Scholar
  19. Hart, E. B., Steen bock, H. B., Waddell, J. and Elvehjem, C. A., (1928). J. Biol. Chem.Google Scholar
  20. Hellerman, L. (1937). Physiol. Rev., 17, 454.Google Scholar
  21. Henderson, L. (1913). The Fitness of the Environment, N. Y.Google Scholar
  22. Ingram, V. M. (1961). Nature, 189, 704.PubMedCrossRefGoogle Scholar
  23. von Jenson, J., Thofern, E. (1954). Zeit. F. Naturforsch, 9b, 596.Google Scholar
  24. Labbe, R. F., and Hubbard, N., (1961). Biochim. Biophys. Acta. 52, 130.PubMedCrossRefGoogle Scholar
  25. Leach, R. M., Jr. (1971). Fed. Proc., 30, 991.PubMedGoogle Scholar
  26. Macara, T. G., Hoy, T. G. and Harrison, P. M. (1972). Biochem. J., 126, 151.PubMedGoogle Scholar
  27. McCord, J. M., Keele, B. B. and Fridovich, I. (1971). Proc. Nat. Acad. Sci. U. S. 68, 1024.CrossRefGoogle Scholar
  28. Neilands, J. B. (1972). in Structure and Bonding, 11, Springer-Berlag, N. Y., p. 145.Google Scholar
  29. Osaki, S., Johnson, D. and Frieden, E. (1971). J. Biol Chem., 246, 2746.Google Scholar
  30. Osaki, S., Johnson, D. and Frieden, E. (1966). J. Biol. Chem., 241, 2746.PubMedGoogle Scholar
  31. Osaki, S., Sirivech, S. and Frieden, E. (1974). in press.Google Scholar
  32. Prosser, C. L. and Brown, F. A. (1961). in: Comp. Animal Physiol., W. B. Saunders, Philadelphia, Pa., p. 198.Google Scholar
  33. Prockop, D. J. (1971). Fed. Proc, 30, 984.PubMedGoogle Scholar
  34. Ragan, H. A., Nacht, S., Lee, G. R., Bishop, C. R. and Cartwright, G. E. (1969). Am. J. Physiol., 217, 1320.PubMedGoogle Scholar
  35. Roeser, H. P., Lee, G. R., Nacht, S. and Cartwright, G. E. (1970). J. Clin. Invest., 49, 2408.PubMedCrossRefGoogle Scholar
  36. Schwarz, K. (1974). TEMA-II Symposium, in press.Google Scholar
  37. Sirivech, S., Frieden, E. and Osaki, S. (1974). In press.Google Scholar
  38. Vallee, B. and Wacker, W. E. C. (1970). Metalloproteins in “The Proteins,” V, (Ed. H., Neurath), Academic Press, N. Y.Google Scholar
  39. Vallee, B. and Williams, R. J. P. (1968). Proc. Nat. Acad. Sci. U.S. 59, 498.CrossRefGoogle Scholar
  40. Westmoreland, N. (1971). Fed. Proc, 30, 1001.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Earl Frieden
    • 1
  1. 1.Department of ChemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations