Skip to main content

Phenomenology of Neutral Current Interactions

  • Chapter
  • 243 Accesses

Part of the book series: The Subnuclear Series ((SUS,volume 14))

Abstract

It was three years ago this summer that the Gargamelle Collaboration discovered neutral-current phenomenal--perhaps the most important high-energy physics discovery made on this side of the Atlantic since the discoveries of pions and strange particles in the late 1940s. The initial phase of this three-year period may be called the “discovery era,” during which we witnessed breathtaking “alternating neutral currents.” It appears that this first era, which may be characterized as allegro con brio,2 is now over, and we have entered a new era during which we are confronted with the extraordinarily difficult task of determining the detailed space-time and internal properties of the hadronic and leptonic neutral currents. The tempo of the present era may perhaps be described as lento.

Supported in part by the National Science Foundation and the John Simon Guggenheim Memorial Foundation.

Permanent address.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. F. J. Hasert et al., Phys. Lett. 46B, 138 (1973).

    Google Scholar 

  2. I am following Professor H. Faissner who compared the Neutrino Conference (Aachen, June 1976) he organized to a well-structured Viennese symphony.

    Google Scholar 

  3. A. Salam, Proceedings 8th Nobel Symposium, ed. N. Svartholm ( Almquist and Wiksells, Stockholm, 1968 ), p. 367

    Google Scholar 

  4. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

    Article  ADS  Google Scholar 

  5. J. J. Sakurai, CERN TH-2099 (to be published in Proceedings International Summer Institute of Theoretical Physics, DESY, Hamburg, September 1975 ).

    Google Scholar 

  6. T. Y. Ling, Proceedings Neutrino Conference (Aachen, June 1976 ).

    Google Scholar 

  7. L. M. Sehgal, Phys. Lett. 55B, 205 (1975).

    Article  MathSciNet  Google Scholar 

  8. L. Wolfenstein, Nucl. Phys. B91, 95 (1975).

    Article  ADS  Google Scholar 

  9. J. E. Kim, V. S. Mathur, and S. Okubo, Phys. Rev. D9, 3050 (1974).

    ADS  Google Scholar 

  10. J. Bernstein and T. D. Lee, Phys. Rev. Lett. 11, 512 (1963);

    Article  ADS  Google Scholar 

  11. C. Bouchiat, J. Iliopoulos, and Ph. Meyer, Phys. Lett. 42B, 91 (1972).

    Article  Google Scholar 

  12. B. Kayser et al., Phys. Lett. 52B, 385 (1974)

    Google Scholar 

  13. R. L. Kingsley, F. Wilczek, and A. Zee, Phys. Rev. D10, 2216 (1974).

    ADS  Google Scholar 

  14. D. Buchholz, Proceedings Neutrino Conference ( Aachen, June 1976 ).

    Google Scholar 

  15. P. Sutherland et al., Phys. Rev. D13, 2700 (1976).

    ADS  Google Scholar 

  16. C. Bouchiat, Phys. Lett. 57B, 284 (1975)

    ADS  Google Scholar 

  17. E. A. Hinds et al., Phys. Lett. 62B, 97 (1976).

    ADS  Google Scholar 

  18. G. t’Hooft, Phys. Lett. 37B, 195 (1971).

    Article  Google Scholar 

  19. J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  20. S. Pakvasa and G. Rajasekaran, Phys. Rev. D12, 113 (1975)

    ADS  Google Scholar 

  21. M. Gronau, Nuovo Cimento Lett. 14, 204 (1975).

    Article  Google Scholar 

  22. F. J. Hasert et al., Phys. Rev. Lett. 46B, 121 (1973)

    Google Scholar 

  23. J. Blietschau et al., CERN/EP/PHYS 76–42 (submitted to Nucl. Phys. B).

    Google Scholar 

  24. F. Bobisut, Proceedings Neutrino Conference ( Aachen, June 1976 ).

    Google Scholar 

  25. A plot of this kind was first proposed in H. H. Chen and G. W. Lee, Phys. Rev. D5, 1874 (1974).

    Google Scholar 

  26. F. Reines, H. S. Gurr, and H. W. Sobel, Phys. Rev. Lett. 37, 315 (1976).

    Article  ADS  Google Scholar 

  27. When the electron mass is not ignored, the variable y in the formula for da/dy should be understood as Ee/E where Ee is the final electron energy in the laboratory system.

    Google Scholar 

  28. Sections 4–6 are largely based on an invited talk I gave at the Aachen Conference; J. J. Sakurai, Proceedings Neutrino Conference (Aachen, June 1976 ).

    Google Scholar 

  29. For example, the constant y in this paper is related to the con2 stant vs of Reference 4) by y = vs.

    Google Scholar 

  30. S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).

    ADS  Google Scholar 

  31. M. A. Bég and A. Zee, Phys. Rev. Lett. 30, 675 (1973)

    Article  ADS  Google Scholar 

  32. V. S. Mathur, S. Okubo, and J. E. Kim, Phys. Rev. D11, 1059 (1975).

    ADS  Google Scholar 

  33. A. De Rûjula, H. Georgi, and S. L. Glashow, Phys. Rev. Lett. 35, 65 (1975)

    Google Scholar 

  34. H. Fritzsch, M. Gell-Mann, and P. Minkowski, Phys. Lett. 59B, 256 (1975).

    Google Scholar 

  35. Y. Achiman, K. Koller, and T. F. Walsh, Phys. Lett. 59B, 261 (1975).

    Google Scholar 

  36. F. Gürsey and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976).

    Article  ADS  Google Scholar 

  37. S. L. Adler and S. F. Tuan, Phys. Rev. D11, 129 (1975).

    ADS  Google Scholar 

  38. The importance of U spin invariance in understanding the absence of the strangeness-changing neutral currents was emphasized in: J. J. Sakurai, Phys. Rev. D9, 250 (1974)

    Google Scholar 

  39. V. S. Mathur, S. Okubo, and J. E. Kim, Phys. Rev. D10, 3648 (1974).

    ADS  Google Scholar 

  40. Pham Quang Hung and J. J. Sakurai, Phys. Lett. 63B, 295 (1976).

    Google Scholar 

  41. Special cases of these equations have been derived by a number of authors: E. A. Paschos and L. Wolfenstein, Phys. Rev. D7, 91 (1973)

    Article  ADS  Google Scholar 

  42. G. Rajasekaran and K. V. L. Sarma, Pramana 2, 62 (1974)

    Article  ADS  Google Scholar 

  43. A. De Rûjula et al., Rev. Mod. Phys. 46, 391 (1974).

    Article  ADS  Google Scholar 

  44. R. P. Feynman, “Photon Hadron Interactions” (W. A. Benjamin, New York, 1972 ), p. 132

    Google Scholar 

  45. C. Chang et al., Phys. Rev. Lett. 35, 901 (1975);

    Article  ADS  Google Scholar 

  46. H. L. Anderson et al., Phys. Rev. Lett. 37, 4 (1976).

    Article  ADS  Google Scholar 

  47. A. Benvenuti et al., Phys. Rev. Lett. 36, 1478 (1976)

    Article  ADS  Google Scholar 

  48. A. Benvenuti et al., Phys. Rev. Lett. 37, 189 (1976).

    Article  ADS  Google Scholar 

  49. H. J. Lipkin, Phys. Reports 8, 175 (1973).

    Article  ADS  Google Scholar 

  50. W. B. Atwood, SLAC Report 185 (1975).

    Google Scholar 

  51. After Fig. 5.2 [taken from Reference 31)] was prepared, we have learned that the EM and vectorlike models considered in the figure are ruled out by recent data. However, variants of the models where we add axial-vector currents with the same isovector-isoscalar ratios (ß/S = a/y) give the same predictions for neutron-to-proton ratios, and they are not yet ruled out by the data.

    Google Scholar 

  52. W. Van Doninck, Proceedings Neutrino Conference ( Aachen, June 1976 ).

    Google Scholar 

  53. T. W. Donnelly et al., Phys. Lett. 49B, 8 (1974).

    Google Scholar 

  54. H. S. Gurr, F. Reines, and H. W. Sobel, Phys. Rev. Lett. 33, 179 (1974).

    Article  ADS  Google Scholar 

  55. D. Z. Freedman, Phys. Rev. D9, 1389 (1974).

    ADS  Google Scholar 

  56. The constant ao in Reference 42) is related to our y by ao = 2 y.

    Google Scholar 

  57. J. R. Wilson, Phys. Rev. Lett. 32, 849 (1974)

    Article  ADS  Google Scholar 

  58. D. N. Schramm and W. D. Arnett, Phys. Rev. Lett. 34, 113 (1975).

    Article  ADS  Google Scholar 

  59. M. K. Gaillard, S. Jackson, and D. Nanopoulos, Nucl. Phys. B102, 326 (1976).

    Article  ADS  Google Scholar 

  60. Equation (6.10) is a generalization of a relation first obtained in: S. Weinberg, Phys. Rev. 5, 1412 (1972).

    Google Scholar 

  61. S. L. Adler et al., Phys. Rev. D11, 3309 (1975);

    ADS  Google Scholar 

  62. S. L. Adler, Phys. Rev. D12, 2644 (1975).

    ADS  Google Scholar 

  63. A somewhat smaller value of gA s) is obtained if SU(3) is used together with the D/F ratio inferred from hyperon decay.

    Google Scholar 

  64. D. Cline et al., Phys. Rev. Lett. 37, 252 (1976).

    Article  ADS  Google Scholar 

  65. W. Lee et al., Phys. Rev. Lett. 37, 186 (1976).

    Article  ADS  Google Scholar 

  66. C. H. Albright et al., FERMILAB-PUB-76/45-TH.

    Google Scholar 

  67. D. Cline et al., Phys. Rev. Lett. 37, 648 (1976).

    Article  ADS  Google Scholar 

  68. J. J. Sakurai, Phys. Rev. Lett. 35, 1037 (1975).

    Article  ADS  Google Scholar 

  69. E. D. Bloom and F. J. Gilman, Phys. Rev. Lett. 25, 1140 (1970).

    Article  ADS  Google Scholar 

  70. S. L. Adler et al., Phys. Rev. D13, 1216 (1976).

    Article  ADS  Google Scholar 

  71. E. A. Paschos, Proceedings 10th Rencontre de Moriond, ed. Tran Thanh Van (CNRS, Paris), p. 341.

    Google Scholar 

  72. C. H. Bertrand Coremans et al., Phys. Lett. 61B, 207 (1976).

    Google Scholar 

  73. C. H. Albright and J. Cleymans, Nucl. Phys. B76, 48 (1974)

    Article  ADS  Google Scholar 

  74. L. M. Sehgal, Nucl. Phys. B90, 471 (1975).

    Article  ADS  Google Scholar 

  75. C. H. Llewellyn Smith and D. V. Nanopoulos, Nucl. Phys. B78, 205 (1974).

    Article  ADS  Google Scholar 

  76. The spirit of my approach to this subject closely parallels that of L. Wolfenstein [AIP Proceedings No. 23, Division of Particles and Fields, Williamsburg, Sept. 1974 (ed. C. E. Carlson), p. 84] who discussed the reaction (7.2) without reference to particular models.

    Google Scholar 

  77. N. Cabibbo and R. Gatto, Phys. Rev. 124, 1577 (1961)

    Article  ADS  Google Scholar 

  78. A. Love, Nuovo Cimento Lett. 5, 113 (1972)

    Article  Google Scholar 

  79. J. Godine and A. Hankey, Phys. Rev. D6, 3301 (1972)

    ADS  Google Scholar 

  80. V. K. Cung, A. K. Mann, and E. A. Paschos, Phys. Lett. 41B, 355 (1972)

    Article  Google Scholar 

  81. R. Bundy, Phys. Lett. 45B, 340 (1973).

    Google Scholar 

  82. Equation (8.12) of my DESY paper [Reference 4)] is wrong.

    Google Scholar 

  83. M. Gourdin, Proceedings Neutrino Conference ( Aachen, June 1976 ).

    Google Scholar 

  84. Note from (7.9) and (7.11) that at low values of s the asymmetry prediction in the Salam-Weinberg model is independent of 6W.

    Google Scholar 

  85. M. A. Bouchiat and C. C. Bouchiat, Phys. Lett. 46B, 111 (1974).

    Google Scholar 

  86. P. C. Soreide et al., Phys. Rev. Lett. 36, 352 (1976).

    Article  ADS  Google Scholar 

  87. P. G. H. Sandars, “Atomic Physics” 4, ed. G. Zu Putlitz, E. W. Weber, and A. Winnacker ( Plenum, New York, 1975 ).

    Google Scholar 

  88. E. M. Henley, Proceedings 9th International Conference on the Physics of Electronic and Atomic Collisions, Seattle, Washington (1975)

    Google Scholar 

  89. E. M. Henley and L. Wilets, Phys. Rev. A (to be published).

    Google Scholar 

  90. Some examples of this can be found in a recent paper by J. Bernabéu and C. Jarlskog, CERN TH-2206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Sakurai, J.J. (1978). Phenomenology of Neutral Current Interactions. In: Zichichi, A. (eds) Understanding the Fundamental Constituents of Matter. The Subnuclear Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0931-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0931-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0933-8

  • Online ISBN: 978-1-4684-0931-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics