Skip to main content

Thin Films of Metals and Inorganic Compounds Vacuum Deposited by High Energy Laser

  • Conference paper

Abstract

It has been established by many workers that the rate of deposition is an important parameter for the properties of thin films produced in vacuum. However, the velocity of the vapor atoms (kinetic energy) seems to play an even more important role which is being realized only more recently with the greater application of the sputtering technique for the deposition of thin films where much larger velocities are achieved. Films obtained by sputtering show some remarkable differences in adhesion, stability of electrical properties1, low temperature coefficient of electrical resistance, a. o., although the deposition rate may be the same as the deposition rate achieved with conventional thermal evaporation (resistance heating or electron beam heating) or even less. The difference should be due to the much higher velocity of sputtered vapor atoms2. A sputtered atom already brings with itself a kinetic energy equivalent to at least the condensation heat; it is of the order of 5–10 eV or more. By changing the deposition rate with conventional thermal evaporation sources the velocity is not affected so much, since it is only a function of the square root of the temperature, whereas a much greater change of the vapor density occurs. Applying a high intensity laser, velocities can be obtained which are comparable with those achieved with the non-thermal sputtering process.

Presented at the Summer Workshop “Laser Interaction and Related Plasma Phenomena” at Rensselaer Polytechnic Institute, June 9–13, 1969 and partly included in a paper co-authored by H. A. Tourtellotte, “Vacuum Deposition by High-Energy Laser with Emphasis on Barium Titanate Films, J. Vac. Sci. Technol. 6, 373–378 (1969).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. H. Pratt, National Electronics Conference Chicago Proceedings Vol. 20, 215 (1964).

    Google Scholar 

  2. G. K. Wehner and R. V. Stuart, 23rd Annual Conference Physical Electronics MIT, Cambridge, Mass., March 1963, Report p. 150 and in CR VI Conf. Internat. Phenomenes d’Ionization dans les Gaz (Paris 1963 ), Vol. 2, p. 49;

    Google Scholar 

  3. R. V. Stuart, K. Brower and W. Mayer, Rev. Sci. Instr. 34, 425 (1963);

    Article  ADS  Google Scholar 

  4. R. V. Stuart and G. K. Wehner, J. Appl. Phys. 35, 1819 (1964).

    Article  ADS  Google Scholar 

  5. H. M. Smith and A. F. Turner, Appl. Opt. 4, 147 (1965).

    Article  ADS  Google Scholar 

  6. P. D. Zavitsanos and W. E. Sauer, J. Electrochem. Soc. 115, 109 (1968).

    Article  Google Scholar 

  7. H. Schwarz, J. Appl. Phys. 35, 2020 (1964).

    Article  ADS  Google Scholar 

  8. S. Namba, P. H. Kim and H. Schwarz, Proc. 8th Int. Conf. on Phenomena in Ionized Gases ( Vienna, Austria, 1967 ), p. 59.

    Google Scholar 

  9. C. Feldman, Rev. Sci. Instr. 26, 463 (1955).

    Article  ADS  Google Scholar 

  10. O. Roder, Z. angew. Phys. 12, 323 (1960).

    Google Scholar 

  11. E. K. Muller, B. J. Nicholson and G. L. E. Turner, Brit. J. Appl. Phys. 13, 486 (1962).

    Article  ADS  Google Scholar 

  12. L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).

    Article  ADS  Google Scholar 

  13. A. Moll, Z. angew. Phys. 10, 410 (1958).

    Google Scholar 

  14. W. Liesk, Naturwissenschaften 50, 566 (1963).

    Article  ADS  Google Scholar 

  15. A. Baltz, Appl. Phys. Letters 7, 10 (1965).

    Google Scholar 

  16. Designed by Denton Vacuum, Cherry Hill, New Jersey

    Google Scholar 

  17. J. F. Ready, Appl. Phys. Letters 3, 11 (1963).

    Google Scholar 

  18. S. S. Penner, AIAA Journal 2, 1664 (1964).

    Article  Google Scholar 

  19. S. I. Anisimov, A. M. Bonch-Bruevich, M. A. El’yashevich, Ya. A. Imas, N. A. Pavlenko, and G. S. Romanov, Soy. Phys. -Tech. Phys. 11, 945 (1967).

    Google Scholar 

  20. A. E. Feurersanger, A. K. Hagenlocher, and A. L. Solomon, J. Electrochem. Soc. 111, 1387 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this paper

Cite this paper

Schwarz, H. (1971). Thin Films of Metals and Inorganic Compounds Vacuum Deposited by High Energy Laser. In: Schwarz, H.J., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0901-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0901-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0903-1

  • Online ISBN: 978-1-4684-0901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics