Skip to main content

Some Results of the Self-Similarity Model

  • Conference paper
Laser Interaction and Related Plasma Phenomena

Abstract

The self-similarity model of expanding laser produced plasma is derived from the hydrodynamic equations. An analytical iterative solution taking into account the varying plasma diameter results in remarkably higher electron temperatures. Numerical iteration with the condition of total transfer of the radiation to the plasma in overdense states shows a good agreement with measurements of Engelhardt et. al. at large spherical suspended targets and agreement with measurements of Sigel et. al. at hydrogen foils. On the basis of detailed numerical calculations of Mulser et. el., either heating by self focusing, or higher thermal conductivity than Spitzer’s values are concluded due to collective effects at conditions of high density, if conditions of degeneration and Coulomb logarithms less than unity are present.

Presented at the Workshop on “Laser Interaction and Related Plasma Phenomena”, Rensselaer Polytechnic Institute, Hartford Graduate Center, June 9–13, 1969.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. G. Basov, O. N. Krokhin: Quantum Electronis, Proc. Ilird Int. Congress, Paris (Feb.1963) Ed. by P. Grivet and N. Bloembergen, Dunod, Paris 1964, Vol. I, p. 1373.

    Google Scholar 

  2. J. M. Dawson: Phys. Fluids 7, 981 (1964).

    Article  ADS  Google Scholar 

  3. A. G. Engelhardt: Bull. Amer.Phys. Soc. 9, 305 (1964).

    Google Scholar 

  4. H. Hora: Institut f. Plasmaphysik, Garching, Report IPP 6 /23 (1964).

    Google Scholar 

  5. A. F. Haught, D. H. Polk: Phys. Fluids 9, 2047 (1966).

    Article  ADS  Google Scholar 

  6. P. E. Faugeras, M. Mattioli, R. Papoular: AIAA Fluid and Plasma Dynamics Conf. Los Angeles, Calif. June 1968.

    Google Scholar 

  7. M. J. Lubin, H. S. Dunn, W. Friedman: Plasma Physic and Cont. Thermon. Fusion, Conf. Proc. Novosibirsk (Aug. 1968), Vienna 1969 p. 945.

    Google Scholar 

  8. A. G. Engelhardt, T. V. George, H. Hora, J. L. Pack: Phys. Fluids 13, No. 1 (1970).

    Google Scholar 

  9. T. V. George, A. G. Engelhardt, J. L. Pack, H. Hora, G. Cox: Bull. Amer. Phys. Soc. 13, 1553 (1968).

    Google Scholar 

  10. J. Dawson, P. Kaw, B. Green: Phys. Fluids 12, 875 (1969).

    Article  ADS  Google Scholar 

  11. H. Hora, D. Pfirsch, A. Schlüter: Z. Naturforschung 22A, 278 (1967).

    ADS  Google Scholar 

  12. W. I. Linlor: Appl. Phys. Letters 3, 210 (1963)

    Article  ADS  Google Scholar 

  13. W. I. Linlor: Phys. Rev. Letters 12, 383 (1964)

    Article  ADS  Google Scholar 

  14. H. Opower, E. Burlefinger: Phys. Letters 16, 37 (1965)

    Article  ADS  Google Scholar 

  15. H. Opower, W. Kaiser, H. Puell, W. Heinicke: Z. Naturforschung 22A, 1392 (1967).

    ADS  Google Scholar 

  16. Yu. V. Afanasyev, O. N. Krokhin, G. V. Sklizkov: IEEE J. Quantum Electronics QE2, 483 (1966)

    Article  ADS  Google Scholar 

  17. A. Caruso, B. Bertotti, P. Giupponi: Nuovo Cim. 45B, 176 (1966)

    Article  ADS  Google Scholar 

  18. A. Caruso, R. Gratton: Plasma Physics 10, 867 (1968)

    Article  ADS  Google Scholar 

  19. A. Caruso, A. deAngelis, B. Gratton, S. Martellucci: Phys. Letters 29A, 316 (1969)

    Article  ADS  Google Scholar 

  20. R. G. Rehm: Bull. Amer. Phys. Soc. 13, 879 (1968)

    Google Scholar 

  21. P. Mulser, S. Witkowski: Phys. Letters 28A, 703 (1969)

    Article  ADS  Google Scholar 

  22. P. Mulser: Thesis TH Munich (1969) Institut f. Plasmaphysik, Garching, Report IPP 3/95 (1969)

    Google Scholar 

  23. J. W. Shearer: Numerical Calculations of Plasma Heating by Means of Subnanosecond Laser Pulses; p. of these proceedings

    Google Scholar 

  24. C. Fauquignon, F. Floux: Phys. Fluids (to be published)

    Google Scholar 

  25. F. Floux, D. Cognard, G. deGiovanni: Transactions, 9th International Conf. on Phenomena in Ionized Gases, Bukarest, Aug. 1969.

    Google Scholar 

  26. J. L. Bobin, Y. A. Durand, Ph.P. Langer, G. Tonon: J. Appl. Phys. 39, 4184 (1968)

    Article  ADS  Google Scholar 

  27. A. Caruso:Shock Wave Process, p. of these proceedings

    Google Scholar 

  28. R. Sigel: Thesis TH Munich (1969) (to be published)

    Google Scholar 

  29. R. Sigel, K. Büchl, P. Mulser, S. Witkowski: Phys. Letters 26A, 498 (1968)

    Article  ADS  Google Scholar 

  30. E. Fabre, P. Vasseur: J.de Physique 29, 123 (1968)

    Google Scholar 

  31. J. Jacquinot, C. Leloup, F. Waelbroeck: Rapp. C.E.A., No. 12. 2617 (1964)

    Google Scholar 

  32. W. J. Fader: Phys. Fluids 11, 2200 (1968)

    Article  ADS  Google Scholar 

  33. M. Mattioli: Association Euratom C.E.A. - Fontenay-Report EUR-CEA-FC-523 (1969)

    Google Scholar 

  34. L. Spitzer, Jr.: Physics of fully Ionized Gases Interscience New York 1956

    Google Scholar 

  35. J. Bruneteau E. Fabre, H. Lamain, P. Vasseur: Phys. Letters 22A, 37 (1967)

    Article  ADS  Google Scholar 

  36. A. G. Engelhardt, H. Hora, T. V. George, J. L. Pack: Bull. Amer. Phys. Soc. 13, 887 (1968)

    Google Scholar 

  37. R. W. Minck W. G. Rado: J. Appl. Phys. 37, 355 (1966)

    Article  ADS  Google Scholar 

  38. N. G. Basov, B. A. Boiko, O. N. Krokhin, O. G. Semenov, G. V. Sklizkov: ZhTF 38, 1973 (1968)

    Google Scholar 

  39. H. Hora: Institut für Plasmaphysik, Garching, Report IPP 6 /27 (1964)

    Google Scholar 

  40. H. Hora H. Müller: Institut fur Plasmaphysik, Garching, Report IPP 3/81; (6/71 (1968))

    Google Scholar 

  41. H. Hora: Z. Physik 226, 156 (1969)

    Article  ADS  Google Scholar 

  42. W. G. Griffin, J. Schlüter: Phys. Letters 26A, 241 (1968)

    Article  Google Scholar 

  43. T. Yamanaka, N. Tsuchimori, T. Sasaki, Ch. Yamanaka: Technol. Report Osaka University 18, 155 (1968)

    Google Scholar 

  44. F. Schwirzke: Proc. IIIrd. Europ. Conf. Contr. Fusion, Utrecht, June 1969, WoltersPubl., Groningen 1969

    Google Scholar 

  45. F. Schwirzke, R. G. Tuckfield: Phys. Rev. Letters 22, 1284 (1969)

    Article  ADS  Google Scholar 

  46. D. K. Bhadra: Phys. Fluids 11, 234 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this paper

Cite this paper

Hora, H. (1971). Some Results of the Self-Similarity Model. In: Schwarz, H.J., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0901-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0901-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0903-1

  • Online ISBN: 978-1-4684-0901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics