Skip to main content

Experimental Results of Free Targets

  • Conference paper
Laser Interaction and Related Plasma Phenomena

Abstract

Plasmas produced from free small (5 to l0μ radius) electromagnetically suspended LiH targets showed in the first measurements a quite symmetric expansion but finally an asymmetry with a preferential direction against the laser. Preheating by tailored laser pulses re-established conditions of the self-similarity model of a symmetric expansion and heating up to temperatures of few hundred eV. Aluminum balls of 50 to 150 μ radius showed two groups of plasma, a slow spherical inner core fulfilling thermokinetic properties describable by the self-similarity model, and an asymmetric outer shell expanding preferentially against the laser due to a nonlinear surface process. Free hydrogen targets of the same larger size expand symmetrically and drift slowly into the direction of the laser radiation, indicating a recoil by a surface acceleration against the laser. Magnetic fields decrease the expansion velocity and increase the duration of luminosity in some experiments. Emission of microwave radiation can be explained, but many effects are unsolved (increase of ion energy, increase of electric resistivity, instabilities etc.).

Talk presented at the Workshop “Laser Interaction and Related Plasma Phenomena”, Rensselaer Polytechnic Institute, Hartford Graduate Center, June 9–13, 1969.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.I. Linlor, Appl. Phys. Lett. 3, 210 (1963);

    Article  ADS  Google Scholar 

  2. W.I. Linlor, Phys. Rev. Lett. 12, 388 (1964);

    Article  ADS  Google Scholar 

  3. Laser Production of High Ion Energies, these proceedings, n. 173.

    Google Scholar 

  4. S. Panzer, J. Appl. Math Mech. 16, 138 (1965);

    Google Scholar 

  5. Laser Angew. Strahltech. 1, No. 3, 23 (1977).

    Google Scholar 

  6. A. W. Ehler, and G. L. Weissler, Appl. Phvs. Lett. 8, 89 (1966).

    Article  ADS  Google Scholar 

  7. D. Röss, Laser, Akad. Verl. Ges. Frankfurt/M., 1966;

    Google Scholar 

  8. P. Görlich, and W. Wrede, Nova Acta Leopoldina, 25 (1965).

    Google Scholar 

  9. R. B. Hall, J. Appl. Phys. 40, 1941 (1969).

    Article  ADS  Google Scholar 

  10. H. Schwarz, Linear and Nonlinear Laser Induced Emission of Ions from Solid Targets With and Without Magnetic Field, these Proceedings, p. 207.

    Google Scholar 

  11. S. Witkowski, Free Targets, these Proceedings, p. 259.

    Google Scholar 

  12. A. F. naught, and D. H. Polk, Conf. Proced. Culham, Sept. 1965, IAEP, Vienna, 1966, Vol. II, P. 953;

    Google Scholar 

  13. A. F. naught, and D. H. Polk, Phys. Fluids 9, 2047 (1966);

    Article  ADS  Google Scholar 

  14. A. F. Haught, D. H. Polk, and W. J. Fader, Conf. Proceedings, Novosibirsk, Aug. 1968, IAEA, Vienna, 1969 Vol. I, p. 925.

    Google Scholar 

  15. H. Opower, and E. Burlefinger, Phys. Lett. 16, 37 (1965);

    Article  ADS  Google Scholar 

  16. H. Opower, W. Kaiser, H. Puell, and W. Heintke, Z. Naturforschg. 22a, 1392 (1967);

    ADS  Google Scholar 

  17. D. W. Gregg, and S. J. Thomas, J. Appl. Phys. 37, 4313 (1966);

    Article  ADS  Google Scholar 

  18. B. C. Fawcett, A. H. Gabriel, E. Irons, N.J. Peacock, and P. A. H. Saunders, Proc. Phys. Soc. (London) 88, 1051 (1966);

    Article  ADS  Google Scholar 

  19. J. L. Bobin, F. Floux, P. Langer, and H. Tgnera, Phys. Lett. 28A, 398 (1968).

    Article  ADS  Google Scholar 

  20. G. Tonon, Compt. Rend. 262B, 706 (1966).

    Google Scholar 

  21. B. C. Boland, E. E. Irons, and R. W. McWhirter, J. Phys. 8l 1180, (1968).

    Google Scholar 

  22. S. Namba, H. Schwarz, Proc. IEEE Symp. on Electron, Ion and Laser Beam Technology, Berkeley, May 1967, p. 86;

    Google Scholar 

  23. S. Namba, P. H. Kim, and H. Schwarz, Transactions 8th Int. Conf. Phenomena in Ionized Gases, Vienna, Aug. 1967, p. 59;

    Google Scholar 

  24. S. Namba, P. H. Kim, and H. Schwarz, Sc. Papers Inst. Phys. Chem. Res., Tokyo, 60, 101 (1966);

    Google Scholar 

  25. H. Schwarz, Linear and Nonlinear Laser Induced Emission of Ions from Solid Targets With and Without Magnetic Field, these Proceedings, p. 207.

    Google Scholar 

  26. T. Yamanaka, N. Tsuchimori, T. Sasaki, and Ch. Yamanaka, Technol. Progress Rept. Osaka Univ. 18, 155 (1968).

    Google Scholar 

  27. H. Hirono, and J. Iwamoto, Japan J. Appl. Phys. 6, 1006 (1967).

    Article  ADS  Google Scholar 

  28. R. F. Wuerker, H. M. Goldenbaum, and R. V. Langmuir, J. Appl. Phys. 30, 441 (1959).

    Article  ADS  Google Scholar 

  29. J. M. Dawson, Phys. Fluids 7, 981 (1964);

    Article  ADS  Google Scholar 

  30. Thermo-kinetic Expansion Theory, these Proceedings, p.

    Google Scholar 

  31. J. M. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).

    Article  ADS  Google Scholar 

  32. H. Hora, Some Results of the Self-Similarity Model, these Proceedings, p. 365.

    Google Scholar 

  33. P. E. Faugeras, M. Mattioli, and R. Papoular, Euratom-CEA, Fontenay, Pep. FC-465 (1968).

    Google Scholar 

  34. R. Papoular, Euratom Conf. on Laser-Produced Plasmas, Paris, Febr. 1967.

    Google Scholar 

  35. M. J. Lubin, H. S. Dunn, and W. Friedman, Conf. Proceedings, Novosibirsk, Aug. 1968, IAEA Vienna, 1969, Vol. I, p. 945.

    Google Scholar 

  36. M. Decroisette, Ann. Physique, 2, 203 (1967).

    Google Scholar 

  37. A. F. Haught, D. H. Polk, and W. J. Fader, UARL-Rep. July 1968.

    Google Scholar 

  38. M. Lubin, private communication (1969).

    Google Scholar 

  39. E. W. Sucov, J.L. Pack, A. V. Phelps, and A. G. Engelhardt, Phys. Fluids 10, 2035 (1967).

    Article  ADS  Google Scholar 

  40. A. G. Engelhardt, T. V. George, H. Hora, and J. L. Pack, Westinghouse Res. Lab. Pept. WERL-3472–9 (1968);

    Google Scholar 

  41. A. G. Engelhardt, T. V. George, H. Hora, and J. L. Pack, Phys. Fluids (to be published); Bull. Amer. Phys. Soc. 13, 887 (1968).

    Google Scholar 

  42. J. L. Pack, T. V. George, and A. G. Engelhardt, Rev. Sci. Instr. 39, 1697 (1968).

    Article  ADS  Google Scholar 

  43. A. G. Engelhardt, J. L. Pack, and T. V. George, Bull. Amer. Phys. Soc. 13, 320 (1968).

    Google Scholar 

  44. A. G. Engelhardt, and H. Hora, Bull. Amer. Phys. Soc. 13, 920 (1968).

    Google Scholar 

  45. N. R. Isenor, Appl. Phys. Lett. 4, 152 (1964);

    Article  ADS  Google Scholar 

  46. N. R. Isenor, Can. J. Phys. 42, 1413 (1964).

    Google Scholar 

  47. H. Hora, D. Pfirsch, and A. Schluter, 22a, 278 (1967);

    Google Scholar 

  48. A. Schlüter, Plasma Phys. 10, 471 (1968);

    Google Scholar 

  49. H. Hora, Phys. Fluids 13, 182 (1969).

    Article  ADS  Google Scholar 

  50. H. Hora, Ann. Physik 22, 402 (1969);

    Article  ADS  Google Scholar 

  51. H. Hora, Z. Physik 226, 156 (1969).

    Article  ADS  Google Scholar 

  52. J. L. Pack, T. V. George, and A. G. Engelhardt, Phys. Fluids 13, 469 (1969).

    Article  ADS  Google Scholar 

  53. A. G. Engelhardt, T. V. George, J. L. Pack, H. Hora, and G. Cox, Bull. Amer. Phys. Soc. 13, 1553 (1968).

    Google Scholar 

  54. P. A. H. Saunders, P. Avivi, and W. Millar, Phys. Lett. 24A, 290 (1967).

    Article  ADS  Google Scholar 

  55. G. Francis, D. W. Atkinson, P. Avivi, J. E. Bradley, C. D. King, W. Millar, P.A.H. Saunders, and A. F. Taylor, Phys. Lett. 25A, 86 (1967).

    Google Scholar 

  56. U. Ascoli-Bartoli, B. Brunelli, A. Caruso, A. DeAngelis, G. Gratton, F. Parlange, and H. Salzmann, Conf. Proc. Novosibirsk, Aug. 1968, IAEA, Vienna, 1969.

    Google Scholar 

  57. J. Brunteneau, E. Fabre, H. Lamain, and P. Vasseur, Phys. Lett. 28A, 777 (1969).

    ADS  Google Scholar 

  58. I. B. Bernstein, and W. J. Fader, Phys. Fluids 11, 2209 (1968)

    Article  ADS  MATH  Google Scholar 

  59. M. Mattioli, and D. Véron, LiH Laser Produced Plasmas, Euratom-CEA- Fontenay, to be published (1969).

    Google Scholar 

  60. A. Cavaliere, P. Giupponi, and R. Gratton, Phys. Lett. 25A, 636 (1967).

    Article  ADS  Google Scholar 

  61. D. K. Bhadra, Phys. Fluids 11, 234 (1960).

    Article  ADS  Google Scholar 

  62. R. Tuckfield, and F. Schwirzke, Plasma Physics 11, 11 (1969);

    Article  ADS  Google Scholar 

  63. F. Schwirzke, and R. Tuckfield, Phys; Rev. Rev. Letters 22, 1284 (1969);

    Article  ADS  Google Scholar 

  64. F. Schwirzke, III. Europ. Conf. Zontr. Fusion, Utrecht, June 1969, Wolters Publish. Groningen, 1969, p. 114.

    Google Scholar 

  65. P. E. Faugeras, M. Mattioli, and R. Papoular, AIAA Fluid and Plasma Dynamics Conf., Los Angeles, Calif., June 1968;

    Google Scholar 

  66. M. Mattioli, Euraton-CEA-Fontenay Ren. FC-477 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this paper

Cite this paper

Hora, H. (1971). Experimental Results of Free Targets. In: Schwarz, H.J., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0901-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0901-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0903-1

  • Online ISBN: 978-1-4684-0901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics