Skip to main content

Radiation Effects in Thin Films

  • Chapter
Physics of Nonmetallic Thin Films

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 14))

  • 346 Accesses

Abstract

The term “radiation effects” is usually used to describe the secondary phenomena which occur after a high-energy photon or particle has passed through a solid lattice and disturbed it by transferring momentum to some atoms or by raising some atoms to electronically excited states. While these primary transfers of energy are predictable and roughly similar in form for all elements and compounds, the sequelae depend very strongly on the chemical and physical structure of the solid. For thin films, we should thus observe virtually all the effects expected in the corresponding bulk material, to which will be added a range of effects characteristic of the thin-film state such as surface effects, non-stoichiometry, high impurity levels, strain and disorder. Also, since thin films are frequently used in electronic devices, we must interest ourselves in effects associated with drift or displacement of electrons, holes or ions. This variety makes the investigation of radiation effects in thin films a challenging task especially since the nature of thin films eliminates several of the conventional investigative tools used for bulk crystals. However, because of its technological importance, the field continues to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Holmes-Siedle, Reports of Progress in. Physics, 37 (6), 669 (1974).

    Article  ADS  Google Scholar 

  2. W.L. Brown, J.D. Gabbe and W. Rosenzweig, Bell Syst. Tech. 42 1505 (1963).

    Google Scholar 

  3. W.S. West, W.J. Poch, A.G. Holmes-Siedle and D. Carroll NASA TR-R-371 (Washington NASA 1971).

    Google Scholar 

  4. A.G. Holmes-Siedle, Nature 251, 191 (1974).

    Article  ADS  Google Scholar 

  5. A. Charlesby, Atomic Radiation and Polymers (Oxford Pergamon) p. 52 (1960).

    Google Scholar 

  6. S. Glasstone, The Effects of Nuclear Weapons (US Atomic. Energy Commission: Washington DC 1962).

    Google Scholar 

  7. G.M. McCracken and S. Blow, UKAEA Culham Report No.CLM-R120 (1972).

    Google Scholar 

  8. W.J. Poch and A.G. Holmes-Siedle, IEEE Trans. Nucl. Sci. NS 15 (6) 213 (1968).

    Article  ADS  Google Scholar 

  9. J.W. Corbett, “Electron Radiation Damage in Semiconductors and Metals “New York, Academic Press, (1966).

    Google Scholar 

  10. S. Braun and H.G. Grimmeiss, J. Appl. Phys. 45, 2658 (1974).

    Article  ADS  Google Scholar 

  11. P. Balk, “Solid-State Devices, 1973” Conference Series n°19 (Institute of Physics, London) (1974).

    Google Scholar 

  12. P.J. Mitchell and DeNure, Solid State Electronics 16, 825 (1973).

    Article  ADS  Google Scholar 

  13. P.A. Walley and A.K. Jonscher, Thin Solid Films 1, 367 (1967).

    Article  Google Scholar 

  14. S.M. Sze, J. Appl. Phys. 38, 2951 (1967).

    Article  ADS  Google Scholar 

  15. R.H. Walden, J. Appl. Phys. 43, 1178 (1972).

    Article  ADS  Google Scholar 

  16. T. Tsujide and K. lida, Japan J. Appl. Phys. 11, 600 (1972).

    Article  ADS  Google Scholar 

  17. C.A.T. Salama, J. Electrochem. Soc. 117, 913 (1970).

    Article  Google Scholar 

  18. E. Harari and B.S.H. Royce, IEEE Trans. Nucl. Sci. NS-20 (6) 280 (1973).

    Google Scholar 

  19. A.J. Bennett, and L.M. Roth, J. Phys. Chem. Solids 32, 1251 (1971).

    Article  ADS  Google Scholar 

  20. E. Harari and A.G. Holmes-Siedle, Bull. Am. Phys. Soc., Ser II, 16, 500 (1971).

    Google Scholar 

  21. T.W. Hickmott, J. Appl. Phys. 42 (6), 2543 (1971).

    Article  ADS  Google Scholar 

  22. A.S. Grove, “Physics and Technology of Semiconductor Devices” Wiley, N.Y. (1967).

    Google Scholar 

  23. K.H. Zaininger, RCA Review 27, 341 (1966).

    Google Scholar 

  24. K.H. Zaininger, IEEE Trans. Nucl. Sci. NS-13 (6) 237 (1966).

    Google Scholar 

  25. P.J. Mitchell, IEEE Trans. Electron. D. v ED-14 (11) 764 (1967).

    Google Scholar 

  26. A.G. Holmes-Siedle and K.H. Zaininger, IEEE Trans, on Reliability, 17, 34 (1968).

    Article  Google Scholar 

  27. B. Andre, J. Buxo, D. Esteve and H. Martinot, Solid State Electronics 12, 123 (1969).

    Article  ADS  Google Scholar 

  28. H.L. Hugues, R.D. Baxter and B. Phillips, IEEE Trans. Nucl. Sci. NS-19 (6) 256 (1972).

    Google Scholar 

  29. C.W. Gwyn, J. App. Phys. 40 (12), 4886 (1969).

    Article  ADS  Google Scholar 

  30. C. Emms, A.G. Holmes-Siedle, I. Groombridge and J.R. Bosnell, IEEE Trans. Nucl. Sci., to be published.

    Google Scholar 

  31. H.L. Hughes, Proc. IEEE Reliability Physics. Las Vegas (March 1971).

    Google Scholar 

  32. T.J. Russell, T. Pandolfi and B.S.H. Royce, Colour Centre Conference, Japan (1974).

    Google Scholar 

  33. R. Williams, Phys. Rev. 140 (2A), 569 (1965).

    Article  ADS  Google Scholar 

  34. A. Goodman, Phys. Rev. 152 (2), 780 (1966).

    Article  ADS  Google Scholar 

  35. E.H. Snow, A.S. Grove and D.J. Fitzgerald, Proc. IEEE, 55 1 168 (1967).

    Google Scholar 

  36. R.J. Powell, J. Appl. Phys. 41, (6), 2424 (1970).

    Article  ADS  Google Scholar 

  37. J.F. Verwey, Appl. Phys. Lett. 43, 2273 (1972).

    Google Scholar 

  38. K.H. Zaininger, Appl. Phys. Letters 8, 140(1966).

    Google Scholar 

  39. J.L. Peel, R.A. Kjar and R.C. Eden, Appl. Phys. Lett. 17, 3 (1970).

    Google Scholar 

  40. T.H. Di Stefano and D.E. Eastman, Solid State Commun. 9, 2259 (1971).

    Article  Google Scholar 

  41. R.J. Powell, (Private Communication).

    Google Scholar 

  42. R.J. Powell and Derbenwick, IEEE Trans. Nucl. Sci. NS-18 (6) 99 (1970).

    Google Scholar 

  43. H.R. Philipp, J. Phys. Chem. Solids 32, 1935 (1971).

    Article  ADS  Google Scholar 

  44. W.J. Dennehy, A.G. Holmes-Siedle and K.H. Zaininger, RCA Review 30, (4) 668 (1969).

    Google Scholar 

  45. A.G. Holmes-Siedle and W.J. Poch, Brit. Interplan. Soc. 24 273 (1971).

    ADS  Google Scholar 

  46. R.A. Burghard and C.W. Gwyn, IEEE Trans. Nucl. Sci. NS-20 (6) 300 (1973)

    Article  ADS  Google Scholar 

  47. W.J. Poch and A.G. A.G. Holmes-Siedle, IEEE Trans. Nucl. Sci. NS-17 (6) 33 (1970).

    Article  ADS  Google Scholar 

  48. J.T. Edmond, J.C. Male and P.F. Chester, J. Phys. E. Sci. Instrum. 1, 373 (1968).

    Article  ADS  Google Scholar 

  49. S.R. Ovshinsky, E.J. Evans, D.C. Nelson and H. Fritzsche, IEEE Trans. Nucl. Sci. NS-15 (6), 311 (1968).

    Article  ADS  Google Scholar 

  50. R.G. Nicolaides and L.W. Doremus, J. Noncryst. Solids 8–10 (1972).

    Google Scholar 

  51. T.M. Flannagan and M.E. Wyatt, J. Noncryst. Solids 2, 229 (1970).

    Article  ADS  Google Scholar 

  52. C.W. Chen and D.M. Bailey, Radiation Effects 10, 65 (1971).

    Article  ADS  Google Scholar 

  53. J. Bosnell and C.B. Thomas, Solid. St. Electron. 15, 1261 (1972).

    Article  ADS  Google Scholar 

  54. L.L. Hench, J. Noncryst. Solids 2, 229 (1970).

    Article  Google Scholar 

  55. D. Adler, H.K. Bowen, L.P.C. Ferrard, D.D. Merchant, R.N. Singh and J.A. Sauvage J. Noncryst. Solids 8–10, 844 (1972).

    Google Scholar 

  56. R. Grogorivici, Thin Solid Films, 12, 153 (1972).

    Article  ADS  Google Scholar 

  57. J.A. Olley and A.D. Yoffe, J. Noncryst. Solids 8–10, 850 (1972).

    Google Scholar 

  58. G. Dearnaley, J.H. Freemann, R.S. Nelson and J. Stephen, Ion Implantation (Amsterdam, North Holland) (1973).

    Google Scholar 

  59. R.D. Standley, W.M. Gibson and J.W. Rogers, Appl. Optics 11 (6) 1313 (1972).

    Article  ADS  Google Scholar 

  60. Chadderton, “Fission Damage in Crystals” (Methuen, London) (1969).

    Google Scholar 

  61. R.A. Sigsbee and R.H. Wilson, Appl Phys. Lett. 23 (10) 541 (1973).

    Article  ADS  Google Scholar 

  62. D.J. Stirland, “The use of Thin Films in Scientific Investigations” (J.C. Anderson Ed. Academic Press. N.Y.), p. 172 (1966).

    Google Scholar 

  63. V. Danchenko, U.D. Desai and S.S. Brashears, J. Appl. Phys. 39, 2417 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Holmes-Siedle, A. (1976). Radiation Effects in Thin Films. In: Dupuy, C.H.S., Cachard, A. (eds) Physics of Nonmetallic Thin Films. NATO Advanced Study Institutes Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0847-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0847-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0849-2

  • Online ISBN: 978-1-4684-0847-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics