Skip to main content

Geoacoustic Models of the Sea Floor

  • Chapter

Part of the book series: Marine Science ((MR))

Abstract

A “geoacoustic model” is defined as a model of the real sea floor with emphasis on measured, extrapolated, and predicted values of those properties important in underwater acoustics and those aspects of geophysics involving sound transmission. Such models are also important in other aspects of geology and geophysics. The real sea floor cannot be defined by any single geoacoustic model; therefore, it is important that acoustic and geophysical experiments at sea involving the sea floor be supported by a particular model of the area. These models can then be used to reconcile experiment and theory. However, it is possible to use geologic and geophysical judgment to extrapolate a general model over wider areas. A sufficient collection of models from diverse environments will allow predictions of bottom models in similar areas of the world’s oceans.

A geoacoustic model should detail the real sea floor. It can then be used in studies of reflection and refraction of compressional and shear waves over wide frequencies, in geologic studies of stratigraphy, sedimentology, and geologic history, and in various studies in the field of geophysics such as the reflection and refraction of sound, and gravity computations.

The production of a geoacoustic model of the sea floor requires assembly of data from a wide variety of sources in the fields of oceanography, geology, and geophysics. A model thus brings into focus and utility data from many scientific disciplines and operations at sea and in the laboratory. In general, a model details the true thicknesses and properties of various sediment and rock layers overlying the earth’s crust. The gross layering may be all that is required in some geologic and geophysical studies, but the acoustician must be supplied sufficient detail to study insonified areas at various sound frequencies. The information required for a complete geoacoustic model should include the following for each layer; in some cases, the state of the art allows only rough estimates, or information may be non-existent.

  1. 1.

    Properties of the overlying water mass from Nansen casts and velocimeter lowerings.

  2. 2.

    Sediment information (from cores, drilling, or geologic extrapolation): sediment types, grain-size distributions, densities, porosities, compressional and shear wave attenuations and velocities, and other elastic properties. Gradients of these properties with depth; for example, velocity gradients and interval velocities from sonobuoy measurements.

  3. 3.

    Thicknesses of sediment layers (in time) determined at various frequencies by continuous reflection profiling.

  4. 4.

    Locations, thicknesses, and properties of reflectors within the sediment body as seen at various frequencies.

  5. 5.

    Properties of rock layers. Those at or near the sea floor are of special importance to the underwater acoustician.

  6. 6.

    Details of bottom topography, roughness, relief, and slope, for example, as seen by underwater cameras, and deep-towed equipment.

Recent studies have provided restrictive parameters for any elastic or viscoelastic model for water-saturated sediments (e.g., velocity dispersion is negligible or absent, and the dependence of attenuation on frequency is close to f to the first power, at frequencies of most interest). These parameters and elastic and viscoelastic models which can be applied to marine sediments are reviewed, and a particular viscoelastic model (with concomitant equations) is recommended.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, F. T., W. M. Sawyer, and J. D. Ferry, “Propagation of transverse waves in viscoelastic media,” J. Appl. Phys. 20, 1036–1041 (1949).

    Article  Google Scholar 

  • Anderson, O. L., and R. C. Liebermann, “Sound velocities in rocks and minerals: experimental methods, extrapolations to very high pressures, and results,” in Physical Acoustics, Principles and Methods, W. P. Mason (ed.) ( Academic Press, New York, 1968 ), pp. 330–466.

    Google Scholar 

  • Attwell, P. B., and Y. V. Ramana, 1966, “Wave attenuation and internal friction as functions of frequency in rocks”: Geophysics, v. 31, p. 1049–1056.

    Google Scholar 

  • Balakrishna, S., and Y. V. Ramana, “Integrated studies of the elastic properties of some Indian rocks,” in The Crust and Upper Mantle of the Pacific Area, L. Knopoff, C. L. Drake, and P. J. Hart (eds.), Geophys. Mon. No. 12 ( Amer. Geophys. Union, Washington, D.C., 1968 ), pp. 489–500.

    Chapter  Google Scholar 

  • Barkan, D. D., Dynamics of Bases and Foundations (McGraw-Hill Book Co., Inc., New York, 1962 ).

    Google Scholar 

  • Bennett, L. C., Jr., In situ measurements of acoustic absorption in unconsolidated marine sediments, Ph.D. Thesis, Bryn Mawr College, 1966, p. 107.

    Google Scholar 

  • Bennett, L. C., Jr., “In situ measurements of acoustic absorption in unconsolidated sediments” (abstract), Trans. Am. Geophys. Union 48, 144 (1967).

    Google Scholar 

  • Biot, M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range; II. Higher-frequency range,” J. A.oust. Soc. Am. 28, 168–178; 179–191 (1956).

    Google Scholar 

  • Biot, M. A., “Mechanics of deformation and acoustic propagation in porous media,” J. A.pl. Phys. 33, 1482–1498 (1962).

    Google Scholar 

  • Birch, F., “The velocity of compressional waves in rocks to 10 kilobars,” Part 2, J. Geophys. Res., 66, 2199–2224, 1961.

    Article  Google Scholar 

  • Birch, F., “Compressibility: Elastic constants,” in Handbook of Physical Constants, S. P. Clark, Jr. (ed.), Geol. Soc. Amer. Memoir 97, 98–174 (1966).

    Google Scholar 

  • Brace, W. F., “Some new measurements of linear compressibility of rocks,” J. Geophys. Res., 70, 391–398, 1965a.

    Article  Google Scholar 

  • Brace, W. F., “Relation of elastic properties of rocks to fabric,” J. Geophys. Res., 70, 5657–5667, 1965b.

    Article  Google Scholar 

  • Bradley, J. J., and A. N. Fort, Jr., “Internal friction in rocks,” in Handbook of Physical Constants, S. P. Clark, Jr. (ed.), Geol. Soc. Amer. Memoir 97, pp. 175–194 (1966).

    Google Scholar 

  • Buchan, S., D. M. McCann, and D. T. Smith, “Relations between the acoustic and geotechnical properties of marine sediments,” Quarterly J. Engin. Geology 5, 265–284 (1972).

    Article  Google Scholar 

  • Busby, J., and E. G. Richardson, 1957, “The absorption of sound in sediments”: Geophysics, v. 22, p. 821–828.

    Google Scholar 

  • Christensen, N. I., “Compressional wave velocities in single crystals of alkali feldspar at pressures to 10 kilobars,” J. Geophys. Res., 71, 3113–3116, 1966a.

    Article  Google Scholar 

  • Christensen, N. I., “Shear wave velocities in metamorphic rocks at pressures to 10 kilobars,” J. Geophys. Res., 71, 3549–3556, 1966b.

    Article  Google Scholar 

  • Dortman, N. B., and M. Sh. Magid, “New data on velocity of elastic waves in crystalline rocks as a function of moisture,” Soviet Geol. 5, 123–129 (1968); translation: Intern. Geology Rev. 11, 517–523 (1969).

    Google Scholar 

  • Evison, F. F., “The seismic determination of Young’s Modulus and Poisson’s Ratio for rocks in situ,” Geotechnique 6, 118–123 (1956).

    Article  Google Scholar 

  • Ewing, J., M. Ewing, T. Aitken, and W. J. Ludwig, “North Pacific sediment layers measured by seismic profiling,” in Geophys. Mon. No. 12, The Crust and Upper Mantle of the Pacific Area, L. Knopoff, C. L. Drake, and P. J. Hart (eds., pp. 147–173 ( Amer. Geophys. Union, Washington, D.C., 1968.

    Google Scholar 

  • Ferry, J. D., Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., New York, 1961 ).

    Google Scholar 

  • Gassmann, F., “Über die Elastizität Poröser Medien,” Vierteljahrs- schrift Naturforschenden Gesellschaft in Zúrich 96, 1–23 (1951).

    Google Scholar 

  • Hall, J. R., Jr., and F. E. Richart, Jr., “Dissipation of elastic wave energy in granular soils,” J. Soil Mech. & Foundations Div., Amer. Soc. Civil Engin. SM 6, 27–56 (1963).

    Google Scholar 

  • Hamilton, E. L., “Sound velocity and related properties of marine sediments, North Pacific,” J. Geophys. Res., 75, 4423–4446, 1970a.

    Article  Google Scholar 

  • Hamilton, E. L., “Sound channels in surficial marine sediments,” J. Acoust. Soc. Am. 48, 1296–1298 (1970b).

    Article  Google Scholar 

  • Hamilton, E. L., 1970c, “Reflection coefficients and bottom losses at normal incidence computed from Pacific sediment properties”: Geophysics, v. 35, p. 995–1004.

    Google Scholar 

  • Hamilton, E. L., “Elastic properties of marine sediments,” J. Geophys. Res., 76, 579–604, 1971a.

    Article  Google Scholar 

  • Hamilton, E. L., 1971b, “Prediction of in situ acoustic and elastic properties of marine sediments”: Geophysics, v. 36, p. 266–284.

    Google Scholar 

  • Hamilton, E. L., 1972, “Compressional-wave attenuation in marine sediments”: Geophysics, v. 37, p. 620–646.

    Google Scholar 

  • Hamilton, E. L., 1972, “Compressional-wave attenuation in marine sediments”: Geophysics, v. 37, p. 620–646.

    Google Scholar 

  • Hamilton, E. L., H. P. Bucker, D. L. Keir, and J. A. Whitney, “Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible,” J. Geophys. Res., 75, 4039–4049, 1970.

    Article  Google Scholar 

  • Hamilton, E. L., D. G. Moore, E. C. Buffington, J. R. Curray, and P. H. Sherrer, “Sediment velocities from sonobuoys: Bay of Bengal, Bering Sea, Japan Sea, and Northeast Pacific,” in preparation, 1974.

    Google Scholar 

  • Hardin, B. O., and F. E. Richart, Jr., “Elastic wave velocities in granular soils,” J. Soil Mech. & Foundations Div., Amer. Soc. Civil Engin. SM 1, 33–65; and discussions SM 5, 103–118 (1963).

    Google Scholar 

  • Hastrup, O. F., “Digital analysis of acoustic reflectivity in the Tyrrhenian Abyssal Plain,” J. Acoust. Soc. Am. 70, 181–190 (1970).

    Article  Google Scholar 

  • Heukelom, W., “Analysis of dynamic deflections on soils and pavements,” Geotechnique 11, 224–243 (1961).

    Article  Google Scholar 

  • Horn, D. R., M. N. Delach, and B. M. Horn,“ Distribution of ash layers and turbidites in the North Pacific, ” Bull. Geol. Soc. Amer. 80, 1715–1724 (1969).

    Article  Google Scholar 

  • Horn, D. R., M. Ewing, B. M. Horn, and M. N. Delach,“ Turbidites of the Hatteras and Sohm Abyssal Plains, western North Atlantic,” Marine Geology 11, 287–323 (1971).

    Article  Google Scholar 

  • Houtz, R. E., and J. I. Ewing, “Detailed sedimentary velocities from seismic refraction profiles in the western North Atlantic,” J. Geophys. Res., 68, 5233–5258, 1963.

    Google Scholar 

  • Houtz, R. E., J. I. Ewing, and X. Le Pichon, “Velocity of deep-sea sediments from sonobuoy data,” J. Geophys. Res., 73, 2615–2641, 1968.

    Article  Google Scholar 

  • Houtz, R., J. Ewing, and P. Buhl, “Seismic data from sonobuoy stations in the northern and equatorial Pacific,” J. Geophys. Res., 75, 5093–5111, 1970.

    Article  Google Scholar 

  • Igarashi, Y., “In situ high-frequency acoustic propagation measurements in marine sediments in the Santa Barbara shelf, California,” Naval Undersea Center Tech. Publ. 334 (NUC TP 334), Naval Undersea Center, San Diego, California (1973), p. 40.

    Google Scholar 

  • Jones, R., “In situ measurement of the dynamic properties of soil by vibration methods,” Geotechnique 8, 1–21 (1958).

    Google Scholar 

  • Knopoff, L., “Attenuation of elastic waves in the earth,” Physical Acoustics, W. P. Mason (ed.) (Academic Press, New York, 1965), Vol. III-B, pp. 287–324.

    Google Scholar 

  • Knopoff, L., and G. J. F. MacDonald, “Attenuation of small amplitude stress waves in solids,” Rev. Modern Phys. 30, 1178–1192 (1958).

    Article  Google Scholar 

  • Krizek, R. J., “Application of the one-sided Fourier transform to determine soil storage and dissipation characteristics,” Proc. Symp. Soil-Structure Interaction, University of Arizona, Tucson, Arizona (1964).

    Google Scholar 

  • Krizek, R. J., and A. G. Franklin, “Energy dissipation in a soft clay,” Proc. Int. S m.. Wave Propagation and D namic Properties of Earth Materials (University of New Mexico Press, Albuquerque, New Mexico, 1968 ), pp. 797–807.

    Google Scholar 

  • Laughton, A. S., 1957, “Sound propagation in compacted ocean sediments”: Geophysics, v. 22, p. 233–260.

    Google Scholar 

  • Le Pichon, X., J. Ewing, and R. E. Houtz, “Deep-sea sediment velocity determination made while reflection profiling,” J. Geophys. Res., 73, 2597–2614, 1968.

    Article  Google Scholar 

  • Levykin, A. I. I., “Longitudinal and transverse wave absorption and velocity in rock specimens at multilateral pressures up to 4000 kg/cm2,” (English ed.) Izvestiya, Acad. Sci., USSR, Physics of the Solid Earth 2, pp. 94–98 (1965).

    Google Scholar 

  • Li, W. N., and D. T. Smith, “Identification of sea-floor sediments using underway acoustics,” Geophysical Prospecting 17, 231–247.

    Google Scholar 

  • McDonal, F. J., F. A. Angona, R. L. Mills, R. L. Sengbush, R. G. Van Nostrand, and J. E. White, 1958, “Attenuation of shear and compressional waves in Pierre shale”: Geophysics, v. 23, p. 421–439.

    Google Scholar 

  • Mack, H., 1966, “Attenuation of controlled wave seismograph signals observed in cased boreholes”: Geophysics, v. 31, p. 243–252.

    Google Scholar 

  • Mizikos, J. P., “Use of acoustic (or seismic) waves for deep sea bottom layers identification and computation of their physical and engineering properties,” in Proceedings of a Symposium, Physical and Engineering Properties of Deep-Sea Sediments, A. L. Inderbitzen (ed.), in press, 1974.

    Google Scholar 

  • Morris, H. E., “Bottom-reflection-loss model with a velocity gradient,” J. Acoust. Soc. Am. 48, 1198–1202 (1970).

    Article  Google Scholar 

  • Muir, T. G., and R. S. Adair, “Potential use of parametric sonar in marine archeology,” Ms., Applied Research Laboratories, The University of Texas at Austin, Austin, Texas.

    Google Scholar 

  • Nafe, J. E., and C. L. Drake, “Physical properties of rocks of basaltic composition,” in Basalts, H. H. Hess and H. Poldervaart (eds.), ( Interscience Publ., New York, 1967 ), pp. 483–502.

    Google Scholar 

  • NAVOCEANO, Handbook of Oceanographic Tables (U.S. Naval Ocean. Office sP-68, 1966 ).

    Google Scholar 

  • Nolle, A. W., and P. W. Sieck, “Longitudinal and transverse ultrasonic waves in synthetic rubber,” J. Appl. Phys. 23, 888–894 (1952).

    Article  Google Scholar 

  • Richart, F. E., Jr., and R. V. Whitman, “Comparison of footing vibration tests with theory,” J. Soil Mech. & Foundation Div. Amer. Soc. Civil Engin. SM 6, 143–193 (1967).

    Google Scholar 

  • Schirmer, F., Eine Untersuchung akustischer Eigenschaften von Sedimenten der Nord-und Ostsee, Ph.D. Thesis, University of Hamburg (1971).

    Google Scholar 

  • Shepard, F. P., “Nomenclature based on sand-silt-clay ratios,” J. Sedim. Petrol 24, 151–158 (1954).

    Google Scholar 

  • Simons, G., and W. F. Brace, “Comparison of static and dynamic measurements of compressibility of rocks,” J. Geophys. Res., 70, 5649–5656, 1965.

    Article  Google Scholar 

  • Simons, G., and W. F. Brace, “Comparison of static and dynamic measurements of compressibility of rocks,” J. Geophys. Res., 70, 5649–5656, 1965.

    Article  Google Scholar 

  • Stoll, R. D., and G. M. Bryan, “Wave attenuation in saturated sediments,” J. Acoust. Soc. Am. 47, 1440–1447 (1970).

    Article  Google Scholar 

  • Tullos, F. N., and C. Reid, 1969, “Seismic attenuation of Gulf Coast sediments”: Geophysics, v. 34, pp. 516–528.

    Google Scholar 

  • Vasil’ev, Y. I., and G. I. Gurevich, “On the ratio between attenuation decrements and propagation velocities of longitudinal and transverse waves,” (English ed.) Izvestiya, Acad. Sci., USSR, Geophys. Series 12, pp. 1061–1074 (1962).

    Google Scholar 

  • White, J. E., Seismic Waves: Radiation Transmission, and Attenuation (McGraw-Hill Book Co., Inc., New York, 1965 ).

    Google Scholar 

  • Whitman, R. V., R. J. Holt, and V. J. Murphy, “Discussion of: vibration modulus of normally consolidated clay,” by B. 0. Hardin and W. L. B.ack, J. Soil Mech. & Foundation Div., Amer. Soc. Civil Engin. 95, SM2, 656–659, 1969.

    Google Scholar 

  • Yong, R. N., and B. P. Warkentin, Introduction to Soil Behavior (The Macmillan Co., Inc., New York, 1966 ).

    Google Scholar 

  • Zemtsov, E. E., “Effect of oil and gas deposits on dynamic characteristics of reflected waves,” Int. Geol. Rev. 11, 504–509 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Hamilton, E.L. (1974). Geoacoustic Models of the Sea Floor. In: Hampton, L. (eds) Physics of Sound in Marine Sediments. Marine Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0838-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0838-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0840-9

  • Online ISBN: 978-1-4684-0838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics