Skip to main content

The Imperfect Solid—Transport Properties

  • Chapter
Defects in Solids

Part of the book series: Treatise on Solid State Chemistry ((TSSC))

Abstract

Any discussion of imperfect solids must necessarily define both what is meant by a perfect solid and the various types of imperfections that are commonly encountered. A complete discussion of chemical and structural defects in solids has already been given in Chapter 5 of Volume 1. However, since transport properties are so dependent on imperfections and since we wish to discuss amorphous solids in detail, a brief outline of order and disorder is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Ziman, Electrons and Phonons, Oxford Univ. Press, London (1960).

    Google Scholar 

  2. C. E. Moore, Atomic Energy Levels, Nat. Bur. Std. (U.S.) Circ. No. 467, Vol. I-III (1949–58).

    Google Scholar 

  3. E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, Cambridge Univ. Press (1935).

    Google Scholar 

  4. G. F. Köster and J. C. Slater, Simplified impurity calculation, Phys. Rev. 96, 1208–1233 (1954).

    Google Scholar 

  5. W. Kohn, in Solid State Physics, Vol. 5, pp. 257–320, Academic Press, New York (1957).

    Google Scholar 

  6. F. C. Brown, Physics of Solids, W. A. Benjamin, New York (1967).

    Google Scholar 

  7. D. Adler, in Physics of Electronic Ceramics, (L. L. Hensch and D. B. Dove, eds.), Part A, pp. 29–66, Marcel Dekker, New York (1971).

    Google Scholar 

  8. D. Weaire, Vol. 1, Chapter 2 of this Treatise.

    Google Scholar 

  9. S. C. Moss and J. F. Graczyk, Evidence of voids within the as-deposited structure of glassy silicon, Phys. Rev. Lett. 23, 1167–1171 (1969).

    CAS  Google Scholar 

  10. D. Adler, Amorphous Semiconductors, CRC Press, Cleveland, Ohio (1971).

    Google Scholar 

  11. L. Vao Hove, The occurrence of singularities in the elastic frequency distribution of a crystal, Phys. Rev 89, 1189–1193 (1953).

    Google Scholar 

  12. F. J. Blatt, Physics of Electronic Conduction in Solids, McGraw-Hill, New York (1968).

    Google Scholar 

  13. D. K. C. MacDonald, Thermoelectricity, Wüey, New York (1962).

    Google Scholar 

  14. A. H. Wilson, Theory of Metals, Cambridge Univ. Press, London (1953).

    Google Scholar 

  15. N. F. Mott, The transition to the metallic state, Phil. Mag 6, 287–309 (1961).

    CAS  Google Scholar 

  16. D. Adler and J. Feinleib, Electrical and optical properties of narrow-band materials, Phys. Rev. B 2, 3112–3134 (1970).

    Google Scholar 

  17. J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. A 276, 238–257 (1963).

    Google Scholar 

  18. J. Hubbard, Electron correlations in narrow energy bands. III. An improved solution, Proc. Roy. Soc. A 281, 401–419 (1964).

    Google Scholar 

  19. G. Kemeny and L. G. Caron, Self-consistent pair correlations in Mott-type insulators, Phys. Rev 159, 768–774 (1967).

    CAS  Google Scholar 

  20. G. W. Pratt and L. B. Caron, Correlation and magnetic effects in narrow-energy bands, J. Appl. Phys. 39, 485–486 (1968).

    Google Scholar 

  21. R. A. Bari, D. Adler, and R. V. Lange, Electrical conductivity in narrow energy bands, Phys. Rev. B 2, 2898–2905 (1970).

    Google Scholar 

  22. N. Ohata and R. Kubo, Electrical conduction in a narrow band: 1. Moment method, J. Phys. Soc. Japan 28, 1402–1412 (1970).

    CAS  Google Scholar 

  23. W. F. Brinkman and T. M. Rice, Single particle excitations in magnetic insulators, Phys. Rev. B 2, 1324–1338 (1970).

    Google Scholar 

  24. N. Ohata, Electrical conduction in a narrow band: IL Effect of randomness in atomic distributions, J. Phys. Soc. Japan 29, 1138–1144 (1970).

    CAS  Google Scholar 

  25. D. C. Langreth, Hall coefficient of Hubbard’s model, Phys. Rev. 148, 707–711 (1966).

    CAS  Google Scholar 

  26. D. Adler, in Solid State Physics, Vol. 21, pp. 1–113, Academic Press, New York (1968).

    Google Scholar 

  27. W. F. Brinkman and T. M. Rice, Hall effect in the presence of strong spin-disorder scattering, Phys. Rev. B 4, 1566–1571 (1971).

    Google Scholar 

  28. D. M. Edwards and A. C. Hewson, Comment on Hubbard’s theory of the Mott transition. Rev. Mod. Phys. 40, 810–811 (1968).

    Google Scholar 

  29. W. F. Brinkman and T. M. Rice, Application of Gutzwiller’s variational method to the metal-insulator transition, Phys. Rev. B 2, 4302–4304 (1970).

    Google Scholar 

  30. M. C. Gutzwiller, Correlation of electrons in a narrow s band, Phys. Rev. 137, A1726-A1735 (1965).

    Google Scholar 

  31. H. Fröhlich, Electrons in lattice fields. Adv. Phys 3, 325–361 (1954).

    Google Scholar 

  32. G. R. Allcock, On the polaron rest energy and effective mass. Adv. Phys. 5, 412–451 (1956).

    Google Scholar 

  33. R. P. Feynman, Slow electrons in a polar crystal, Phys. Rev 97, 660–665 (1955).

    CAS  Google Scholar 

  34. T. Holstein, Studies of polaron motion: 1. The Molecular-crystal model, Ann. Phys. (N. Y.) 8, 325–342 (1959).

    CAS  Google Scholar 

  35. T. Holstein, Studies of polaron motion: IL The “small” polaron, Ann. Phys. (N.Y.) 8, 353–389 (1959).

    Google Scholar 

  36. L. D. Landau, On the motion of electrons in crystal lattices, Phys. Z. Sowjetunion 3, 664–665 (1933).

    CAS  Google Scholar 

  37. L G. Austin and N. F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys 18, 41–102 (1969).

    CAS  Google Scholar 

  38. L. Friedman and T. Holstein, Studies of polaron motion: III. Hall mobility of the small polaron, Ann. Phys. (N. Y.) 21, 494–549 (1963).

    CAS  Google Scholar 

  39. Yu. A. Firsov, Theory of the Hall effect in low-mobility semiconductors, Soviet Phys.—Solid State 5, 1566–1580 (1964).

    Google Scholar 

  40. J. Schnakenberg, The Hall coefficient of the small polaron, Z. Physik 185, 123–138 (1965).

    CAS  Google Scholar 

  41. T. Holstein and L. Friedman, Hall mobility of the small polaron, II. Phys. Rev. 165, 1019–1031 (1968).

    CAS  Google Scholar 

  42. Yu. A. Firsov, Hall effect in polaron semiconductors, Soviet Phys.—Solid State 10, 2387–2394 (1969).

    Google Scholar 

  43. D. Emin, The Hall mobility of a small polaron in a square lattice, Ann. Phys. (N.Y.) 64, 336–395 (1971).

    CAS  Google Scholar 

  44. A. Miller and E. Abrahams, Impurity conduction at low concentrations, Phys. Rev. 120, 745–755 (1960).

    CAS  Google Scholar 

  45. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford Univ. Press, London (1971).

    Google Scholar 

  46. N. F. Mott, Electrons in disordered structures, Adv. Phys. 16, 49–144 (1967).

    CAS  Google Scholar 

  47. N. F. Mott, Conduction in non-crystalline systems: I. Localized electronic states in disordered systems, Phil. Mag. 17, 1259–1268 (1968).

    CAS  Google Scholar 

  48. E. N. Economou and M. H. Cohen, Localization in disordered materials: existence of mobility edges, Phys. Rev. Lett. 25, 1445–1448 (1970).

    CAS  Google Scholar 

  49. T. P. Eggarter and M. H. Cohen, Simple model for density of states and mobility of an electron in a gas of hard-core scatterers, Phys. Rev. Lett. 25, 807–810 (1970).

    Google Scholar 

  50. S. F. Edwards, The localization of electrons in disordered systems, J. Non-Crystall. Solids 4, 417–425 (1970).

    Google Scholar 

  51. N. F. Mott, Conduction in non-crystalline systems: IV. The minimum metallic conductivity, Phil. Mag. 26, 1015–1026 (1972).

    CAS  Google Scholar 

  52. J. M. Ziman, The localization of electrons in ordered and disordered systems: 1. Percolation of classical particles, J. Phys. C 1, 1532–1538 (1968).

    Google Scholar 

  53. H. L. Frisch, J. M. Hanmaersley, and D. J. A. Welsh, Monte-Carlo estimates of percolation probabilities for various lattices, Phys. Rev. 126, 949–951 (1962).

    CAS  Google Scholar 

  54. B. J. Last and D. J. Thouless, Percolation theory arid electrical conductivity, Phys. Rev. Lett. 27, 1719–1721 (1971).

    CAS  Google Scholar 

  55. D. Adler, L. P. Flora, and S. D. Senturia, Electrical conductivity in disordered systems, Solid State Commun. 12, 9–12 (1973).

    CAS  Google Scholar 

  56. M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, Simple band model for amorphous semiconducting alloys, Phys. Rev. Lett. 22, 1065–1068 (1969).

    CAS  Google Scholar 

  57. D. Adler and J. Feinleib, in Electronic Density of States (L. H. Bennett, ed.), Nat. Bur. Std. Special Publication No. 323, pp. 493–504, U.S. Government Printing Office, Washington, D.C. (1971).

    Google Scholar 

  58. N. F. Mott, Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands, Phil. Mag. 19, 835–852 (1969).

    CAS  Google Scholar 

  59. N. F. Mott, Conduction in glasses containing transition-metal ions, J. Non-Cry stall Solids 1, 1–17 (1968).

    CAS  Google Scholar 

  60. V. Ambegaokar, B. I. Halperin, and J. S. Langer, Hopping conductivity in disordered systems, Phys. Rev. B 4, 2612–2620 (1971).

    Google Scholar 

  61. M. Pollack, A percolation treatment of dc hopping conduction, Non-CrystalL Solids 8–10, 486–491 (1972).

    Google Scholar 

  62. D. Jerome, T. M. Rice, and W. Kohn, Excitonic insulator, Phys. Rev. 158, 462–475 (1967).

    CAS  Google Scholar 

  63. B. L Halperin and T. M. Rice, in Solid State Physics, Vol. 21, pp. 115–192, Academic Press, New York (1968).

    Google Scholar 

  64. B. I. Halperin and T. M. Rice, Possible anomalies at a semimetal-semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    CAS  Google Scholar 

  65. J. Zittarz, Transport properties of the “excitonic insulator”: Electrical conductivity, Phys. Rev. 165, 605–611 (1968).

    Google Scholar 

  66. D. Adler and H. Brooks, Theory of semiconductor-to-metal transitions, Phys. Rev. 155, 826–840 (1967).

    CAS  Google Scholar 

  67. D. Adler and J. Feinleib, Semiconductor-to-metal transition in V2O3, Phys. Rev. Lett. 12, 700–703 (1964).

    CAS  Google Scholar 

  68. J. J. Hallers and G. Vertogen, Electronically induced crystallographic transition, Phys. Rev. B 4, 2351–2357 (1971).

    Google Scholar 

  69. D. Adler, Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides, Rev. Mod. Phys. 40, 714–736 (1968).

    CAS  Google Scholar 

  70. I. Nebenzahl and M. Weger, Band structure and lattice distortion in V2O3, Phys. Rev. 184, 936–941 (1969).

    CAS  Google Scholar 

  71. D. Adler, in Critical Phenomena in Alloys, Magnets and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 567–591, McGraw-Hill, New York (1971).

    Google Scholar 

  72. W. Paul, The present position of theory and experiment for VO2, Mat. Res. Bull. 5, 691–702 (1970).

    CAS  Google Scholar 

  73. C. J. Hearn, The metal-insulator transition in VO2, Phys. Lett. 38A, 447–448 (1972).

    Google Scholar 

  74. D. Adler, Antiferromagnetism in Ti203, Phys. Rev. Lett. 17, 139–141 (1966).

    CAS  Google Scholar 

  75. J. C. Slater, Magnetic effects and the Hartree-Fock equation, Phys. Rev. 82, 538–541 (1951).

    CAS  Google Scholar 

  76. L. N. Bulaevskii and D. I. Khomskii, Insulator-metal phase transitions in anti-ferromagnets, Soviet Phys.—Solid State 9, 2422–2426 (1968).

    Google Scholar 

  77. E. Hanamura, Lattice instability associated with metal-semiconductor transitions, Rev. Mod. Phys. 40, 744–747 (1968).

    CAS  Google Scholar 

  78. N. Kristoffel and P. Konsin, Displacive vibronic phase transitions in narrow-gap semiconductors, Phys. Stat. Sol. 28, 741–739 (1968).

    Google Scholar 

  79. A. G. Aronov and E. K. Kudinov, Phase transition in strong electron-phonon interaction, Soviet Phys.—JETP 28, 704–709 (1069).

    Google Scholar 

  80. D. C. Mattis and W. D. Langer, Role of phonons and band structure in metal-insulator phase transition, Phys. Rev. Lett. 25, 376–380 (1970).

    CAS  Google Scholar 

  81. D. C. Mattis, Role of phonons in metal-insulator phase transition, J. de Physique 32 (Suppl. CI), 1086–1089 (1971).

    CAS  Google Scholar 

  82. A. M. de Graaf and R. Luzzi, Crystallographic distortion, electron-electron interaction and the metal-nonmetal transition, Helv. Phys. Acta 41, 764–766 (1968).

    Google Scholar 

  83. J. J. Hallers, Theories on the metal-nonmetal transition, Ph.D. Thesis, Univ. of Groningen (1972).

    Google Scholar 

  84. K. Elk, On a criterion for antiferromagnetism connected with the metal-insulator phase transition, Phys. Stat. Sol. 45, 305–309 (1971).

    CAS  Google Scholar 

  85. D. Pines, in Solid State Physics, Vol. 1, pp. 368–450 (1955).

    Google Scholar 

  86. H. Fröhlich, in Quantum Theory of Atoms, Molecules, and the Solid State (P. O. Lowdin, ed.), pp. 465–468, Academic Press, New York (1966).

    Google Scholar 

  87. D. Adler, unpublished work, 1964; see discussion to paper by G. J. Hyland, Rev. Mod. Phys. 40, 739–742 (1968).

    Google Scholar 

  88. S. Doniach, The insulator-metal transition. Adv. Phys. 18, 819–848 (1969).

    CAS  Google Scholar 

  89. L. M. Falicov and J. C. Kimball, Simple model for semiconductor-metal transitions:SmBé and transition-metal oxides, Phys. Rev. Lett. 22, 997–999 (1969).

    CAS  Google Scholar 

  90. R. Ramirez, L. M. Falicov, and J. C. Kimball, Metal-insulator transitions: A simple theoretical model, Phys. Rev. B 2, 3383–3393 (1970).

    Google Scholar 

  91. B. Alascio, A. Lopez, and V. Grunfeld, A model for the phase diagram of (V(1-x)Crx)2O3, Solid State Commun. 9, 1711–1713 (1971).

    CAS  Google Scholar 

  92. L. M. Falicov and C. E. T. Goncalves da Silva, Metal-insulator and magnetic phase transitions: A thermodynamic model. Solid State Commun. 10, 455–458 (1972).

    CAS  Google Scholar 

  93. J. C. Kimball, Magnetic metal-nonmetal transitions: A simple model, Phys. Rev. Lett. 29, 127–130 (1972).

    CAS  Google Scholar 

  94. P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev. 156, 809–813 (1967).

    CAS  Google Scholar 

  95. M. Plischke, Coherent potential approximation calculation on the Falicov-Kimball model of the metal-insulator transition, Phys. Rev. Lett. 28, 361–363 (1972).

    CAS  Google Scholar 

  96. C. E. T. Goncalves da Silva and L. M. Falicov, Metal-insulator transitions: A coherent potential approximation, J. Phys. C 5, 906–913 (1972).

    Google Scholar 

  97. J. R. Townsend, Solid-state absorption spectra of Mg and MgO, Phys. Rev. 92, 556–560 (1953).

    CAS  Google Scholar 

  98. J. Yamashita, Oxygen band in magnesium oxide, Phys. Rev. 111, 733–735 (1958).

    CAS  Google Scholar 

  99. F. A. Kroger, Point defects and phase stability of transition-metal compounds, J. Phys. Chem. Solids 29, 1889–1899 (1968).

    Google Scholar 

  100. R. E. Watson, Iron series Hartree-Fock calculations, Phys. Rev. 118, 1036–1045 (1960).

    CAS  Google Scholar 

  101. W. Low, Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields, Phys. Rev. 109, 247–255 (1958).

    CAS  Google Scholar 

  102. G. K. Wertheim and S. Hufner, X-ray photoemission band structure of some transition-metal oxides, Phys. Rev. Lett. 28, 1028–1031 (1972).

    CAS  Google Scholar 

  103. D. M. Roessler and W. C. Walker, Electronic spectrum and ultraviolet optical properties of crystalline MgO, Phys. Rev. 159, 733–738 (1967).

    CAS  Google Scholar 

  104. V. A. Fomichev, T. M. Zimkina, and I. I. Zhukova, Investigation of the energy structure of MgO by ultrasoft X-ray spectroscopy, Soviet Phys.—Solid State 10, 2421–2427 (1969).

    Google Scholar 

  105. B. Henderson and J. E. Wertz, Defects in the alkaline earth oxides, Adv. Phys. 11, 749–855 (1968).

    Google Scholar 

  106. E. Yamaka and K. Sawamoto, Electrical conductivity and thermoelectric motive force in MgO single crystals, J.Phys. Soc. Japan 10, 176–179 (1955).

    CAS  Google Scholar 

  107. R. Mansfield, The electrical conductivity and thermoelectric power of magnesium oxide, Proc. Phys. Soc. (London) B66, 612–614 (1953).

    Google Scholar 

  108. A. Lempicki, The electrical conductivity of MgO single crystals at high temperatures, Proc. Phys. Soc. (London) B66, 281–283 (1953).

    Google Scholar 

  109. S. P. Mitoff, Electrical conductivity of single crystals of MgO, J. Chem. Phys. 31, 1261–1269 (1959).

    CAS  Google Scholar 

  110. S. P. Mitoff, Electronic and ionic conductivity in single crystals of MgO, J. Chem. Phys. 36, 1383–1389 (1962).

    CAS  Google Scholar 

  111. M. O. Davies, Transport phenomena in pure and doped magnesium oxide, J. Chem. Phys. 38, 2047–2055 (1963).

    CAS  Google Scholar 

  112. T. J. Lewis and A. J. Wright, The electrical conductivity of magnesium oxide at low temperatures, Brit. J. Appl. Phys. (J. Phys. D.) 1, 441–447 (1968).

    Google Scholar 

  113. R. Lindner and G. D. Parfitt, Diffusion of radioactive magnesium in magnesium oxide crystals, J. Chem. Phys. 26 182–185 (1957).

    CAS  Google Scholar 

  114. S. P. Mitoff, Bulk vs. surface conductivity of MgO crystals, J. Chem. Phys. 41, 2561–2562 (1964).

    CAS  Google Scholar 

  115. N. A. Surplice, The electrical conductivity of calcium and strontium-oxides, Brit. J. Appl. Phys. 11, 175–180 (1966).

    Google Scholar 

  116. W. D. Copeland and R. A. Swalin, Studies on the defect structure of strontium oxide, J. Phys. Chem. Solids 29, 313–325 (1968).

    CAS  Google Scholar 

  117. C. G. Fonstad and R. H. Rediker, Electrical properties of high-quality stannic-oxide crystals, J. Appl. Phys. 42, 2911–2918 (1971).

    CAS  Google Scholar 

  118. D. Adler, Electrical and optical properties of transition-metal oxides. Radiation Effects 4, 123–131 (1970).

    CAS  Google Scholar 

  119. J. B. Goodenough, MetalHc oxides, Progr. Solid State Chem 5, 145–399 (1971).

    CAS  Google Scholar 

  120. J. A. Wilson, Systematics of the breakdown of Mott insulation in binary transition-metal compounds. Adv. Phys. 21, 143–198 (1972).

    CAS  Google Scholar 

  121. A. Ferretti, D. B. Rogers, and J. B. Goodenough, The relation of the electrical conductivity in single crystals of rhenium trioxide to the conductivities of Sr2MgReO6 and NaxWO3, J. Phys. Chem. Solids 26, 2007–2011 (1965).

    CAS  Google Scholar 

  122. L. F. Mattheiss, Band structure and Fermi surface of ReO3, Phys. Rev. 181, 987–1000 (1969).

    CAS  Google Scholar 

  123. L. F. Mattheiss, Crystal-field effects in the tight-binding approximation: ReO3 and perovskite structures, Phys. Rev. B 2, 3918–3935 (1970).

    Google Scholar 

  124. S. M. Marcus, Measurement of the de Haas-van Alphen effect in the transition-metal oxide ReO3, Phys. Lett. 21 A, 584–585 (1968).

    Google Scholar 

  125. J. E. Graebner and E. S. Greiner, Magnetbthermal oscillations and the Fermi surface of ReO3, Phys. Rev. 185, 992–994 (1969).

    CAS  Google Scholar 

  126. J. G. Aiken and A. G. Jordan, Electrical transport properties of single-crystal nickel oxide, Phys. Chem. Solids 29, 2153–2167 (1968).

    CAS  Google Scholar 

  127. C. M. Osburn and W. R. Vest, Defect structure and electrical properties of NiO: IL Temperatures below equilibrium, J. Phys. Chem. Solids 32, 1343–1354 (1971).

    CAS  Google Scholar 

  128. V. P. Zhuze and A. L Shelykh, Hall effect in nickel oxide, Soviet Phys.—Solid State 5, 1278–1280 (1963).

    Google Scholar 

  129. S. Koide, Electrical properties of LixNi(1-x) single crystals, J. Phys. Soc. Japan 20, 123–132 (1965).

    CAS  Google Scholar 

  130. S. P. Mitoff, Electrical conductivity and thermodynamic equilibrium in nickel oxide, J. Chem. Phys 35, 882–889 (1961).

    CAS  Google Scholar 

  131. I. Bransky and N. M. Tallan, High-temperature defect structure and electrical properties of NiO, J. Chem. Phys. 49, 1243–1249 (1968).

    CAS  Google Scholar 

  132. Ya. M. Ksendzov and L. A. Drabkin, Forbidden-band width of nickel monoxide, Soviet Phys.—Solid State 1, 1519–1520 (1965).

    Google Scholar 

  133. S. Pizzini and R. Morlotti, Thermodynamic and transport properties of stoichiometric and nonstoichiometric nickel oxide, J. Electrochem. Soc. 114, 1179–1189 (1967).

    CAS  Google Scholar 

  134. A. J. Springthorpe, I. G. Austin, and B. A. Austin, Hopping conduction in crystals at low temperatures. Solid State Commun. 3, 143–146 (1965).

    CAS  Google Scholar 

  135. Ya. M. Ksendzov, B. K. Avdeenko, and V. V. Marakov, Semiconductor properties of single crystals of nickel oxide, Soviet Phys.—Solid State 9, 828–834 (1967).

    Google Scholar 

  136. S. van Houten, Semiconduction in LixNi(1-x)O, J. Phys. Chem. Solids 17, 7–17 (1960).

    CAS  Google Scholar 

  137. I. G. Austin, A. J. Springthorpe, B. A. Smith, and C. E. Turner, Electronic transport phenomena in single-crystal NiO and CoO, Proc. Phys. Soc. (London) 90, 156–174 (1967).

    Google Scholar 

  138. A. J. Bosman, H. J. van Daal, and G. F. Knüvers, Hall effect between 3(X)K and 1000K in NiO, Phys. Lett. 19, 372–373 (1965).

    CAS  Google Scholar 

  139. H. J. van Daal and A. J. Bosman, Hall effect in CoO, NiO, and α-Fe2O3, Phys. Rev. 158, 736–747 (1967).

    Google Scholar 

  140. A. J. Bosman and C. Crevecoeur, Mechanism of the electrical conduction in Li-doped NiO, Phys. Rev. 144, 763–770 (1966).

    CAS  Google Scholar 

  141. W. E. Spear and D. S. Tannhauser, Hole transport in pure NiO crystals, Phys. Rev. B 7, 831–833 (1973).

    CAS  Google Scholar 

  142. L G. Austin and N. F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969).

    CAS  Google Scholar 

  143. A. J. Bosman and H. J. van Daal, Small-polaron versus band conduction in some transition-metal oxides, Adv. Phys. 19, 1–117 (1970).

    CAS  Google Scholar 

  144. S. Kabashima and T. Kawakubo, High-frequency conductivity of NiO, J. Phys. Soc. Japan 24, 493–497 (1968).

    Google Scholar 

  145. T. M. Wilson, A study of the electronic structure of the first-row transition-metal compounds.Intern. J. Quant. Chem. IIIS, 757–774 (1970).

    Google Scholar 

  146. L. F. Mattheiss, Electronic structure of the 3d transition-metal. monoxides: L Energy-band results, Phys. Rev. B5, 290–306 (1972); IL Interpretation, Phys. Rev. B5, 306–315 (1972).

    Google Scholar 

  147. D. Reinen, Color and composition in inorganic solids: VIIB. Light absorption of divalent nickel in mixed crystals on Mg(1-x) NixO and in tetrahedral coordination, Ber. Bunsenges. Physik. Chem. 69, 82–87 (1965).

    Google Scholar 

  148. N. Kawai and S. Mochizuki, Insulator-metal transition in NiO, Solid State Commun. 9, 1393–1395 (1971).

    CAS  Google Scholar 

  149. G. K. Wertheim and S. Hufner, X-ray photoemission band structure of some transition-metal oxides, Phys. Rev. Lett. 28, 1028–1031 (1972).

    CAS  Google Scholar 

  150. D. E. Eastman, unpublished data (1973).

    Google Scholar 

  151. R. J. Powell and W. E. Spicer, Optical properties of NiO and CoO, Phys. Rev. B 2, 2182–2193 (1970).

    Google Scholar 

  152. D. Adler, Band structure of magnetic semiconductors, IBM J. Res. Develop. 14, 261–268 (1970).

    CAS  Google Scholar 

  153. R. Glosser and W. C. Walker, Electroreflectance observation of localized and itinerant electron states in NiO, Solid State Commun. 9, 1599–1602 (1971).

    CAS  Google Scholar 

  154. M. A. Kolber and R. K. MacCrone, Bound-polaron hopping in NiO, Phys. Rev. Lett. 29, 1457 (1972).

    CAS  Google Scholar 

  155. K. H. Johnson, R. P. Messmer, and J. W. D. Connolly, Localized electronic excitations in nickel oxide, Solid State Commun. 12, 313–316 (1973).

    CAS  Google Scholar 

  156. J. C. Slater and K. H. Johnson, Self-consistent-field Xα cluster method for polyatomic molecules and sohds, Phys. Rev. B 5, 844–853 (1972).

    Google Scholar 

  157. P. D. Dernier and M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3, Phys. Rev. B 2, 3771–3776 (1970).

    Google Scholar 

  158. J. Feinleib and W. Paul, Semiconductor-to-metal transition in V2O3, Phys. Rev. 155, 841–850 (1967).

    CAS  Google Scholar 

  159. R. M. Moon, Antiferromagnetism in V2O3, Phys. Rev. Lett. 25, 527–529 (1970).

    CAS  Google Scholar 

  160. A. S. Barker and J. P. Remeika, Optical properties of V2O3 doped with chromium. Solid State Commun. 8, 1521–1524 (1970).

    CAS  Google Scholar 

  161. M. S. Kozyreva, V. N. Novikov, and B. A. Tallerchik, Optical properties of V2O3 in the region of the phase transition, Soviet Phys.—Solid State 14, 639–643 (1972).

    Google Scholar 

  162. L G. Austin and C. E. Turner, The nature of the metallic state in V2O3 and related oxides, Phil. Mag. 19, 939–149 (1969).

    CAS  Google Scholar 

  163. A. Menth and J. P. Remeika, Magnetic properties of (V(1-x)Crx)2O3, Phys. Rev. B 2, 3756–3762 (1970).

    Google Scholar 

  164. D. Adler, J. Feinleib, H. Brooks, and W. Paul, Semiconductor-to-metal transitions in transitional-metal compounds, Phys. Rev. 155, 851–860 (1967).

    CAS  Google Scholar 

  165. D. B. McWhan and T. M. Rice, Critical pressure for the metal-semiconductor transition in V2O3, Phys. Rev. Lett. 22, 887–890 (1969).

    CAS  Google Scholar 

  166. D. B. McWhan, T. M. Rice, and J. P. Remeika, Mott transition in Cr-doped V2O3, Phys. Rev. Lett. 23, 1384–1387 (1969).

    CAS  Google Scholar 

  167. G. K. Wertheim, J. P. Remeika, H. J. Guggenheim, and D. N. E. Buchanan, Mossbauer effect study of metal-insulator transition in V2O3, Phys. Rev. Lett. 25, 94–96 (1970).

    CAS  Google Scholar 

  168. D. B. McWHian and J. P. Remeika, Metal-insulator transition in (V1-xCrx)2O3, Phys. Rev. B 2, 3734–3750 (1970).

    Google Scholar 

  169. T. M. Rice and D. B. McWhan, Metal-insulator transition in transition-metal oxides, IBM J. Res. Develop. 14, 251–257 (1970).

    CAS  Google Scholar 

  170. T. M. Rice, D. B. McWhan, and W. F. Brinkman, in Proc. Tenth Int. Conf. on the Physics of Semiconductors (S. P. Keller, J. C. Hensel, and F. Stem, eds.), pp. 293–300, USAEC Div. Tech. Inform., Oak Ridge, Tennessee (1970).

    Google Scholar 

  171. D. B. McWhan, T. M. Rice, and J. P. Remeika, in Proc. Int. Conf on the Physics of Solids under Pressure, Grenoble, France, 1979, pp. 149–156, Editions du CNRS, Paris (1970).

    Google Scholar 

  172. T. M. Rice and W. F. Brinkman, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 593–612, McGraw-Hill, New York (1971).

    Google Scholar 

  173. D. B. McWhan, A. Menth, and J. P. Remeika, Metal-insulator transitions in transition-metal oxides, J. de Physique 32 (CI), 1079–1085 (1971).

    CAS  Google Scholar 

  174. D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, Metal-insulator transitions in pure and doped V2O3, Phys. Rev. B 7, 1920–1931 (1973).

    CAS  Google Scholar 

  175. A. F. Reid, T. M. Sabine, and D. A. Wheeler, Neutron diffraction and other studies of magnetic ordering in phases based on Cr2O3, V2O3, and Ti2O3, J. Solid State Chem. 4, 400–409 (1972).

    CAS  Google Scholar 

  176. C. Bonnelle, Contribution to the study of transition metals, Ann. Physique (Paris), 1, 439–481 (1966).

    CAS  Google Scholar 

  177. D. W. Fischer, Use of soft X-ray band spectra for determining molecular orbital structure: 1. Vanadium octahedral and tetrahedral sites, Appl. Spectry. 25, 263–270 (1971).

    CAS  Google Scholar 

  178. A. Gainotti, C. Ghezzi, and M. Manfredi, Semiconductor-to-metal transition and positron annihilation in V2O3, Nuovo Cimento, 62B, 121–129 (1969).

    Google Scholar 

  179. A. Greenberger and S. Berko, Angular distribution of 2γ from positron annihilation in V2O3, Bull Am. Phys. Soc. 17, 358 (1972).

    Google Scholar 

  180. T. N. Kennedy and J. D. Mackenzie, Suppression of the semiconductor-metal transition in vanadium oxides, J. Non-Crystall. Solids 1, 326–330 (1969).

    Google Scholar 

  181. A. Jayaraman, D. B. McWhan, J. P. Remeika, and P. D. Dernier, Critical behavior of the Mott transition in Cr-doped V2O3, Phys. Rev. B 2, 3751–3756 (1970).

    Google Scholar 

  182. V. P. Zhuze, A. A. Andreev, and A. I. Shelykh, The Hall effect in V2O3 single crystals in the metallic conductivity region, Soviet Phys.—Solid State 10, 2914–2916 (1969).

    Google Scholar 

  183. E. D. Jones, Temperature dependence of the vanadium NMR frequency shift in V2O3, J. Phys. Soc. Japan 27, 1692–1693 (1969).

    CAS  Google Scholar 

  184. H. Zeiger, Free-energy model of the high-temperature metal-insulator transition in Ti2O3 and V2O3, Bull. Am. Phys. Soc. 18, 399 (1973).

    Google Scholar 

  185. P. G. Dickens and M. S. Whittingham, The tungsten bronzes and related compounds, Quart. Rev. Chem. Soc. 22, 30–44 (1968).

    CAS  Google Scholar 

  186. A. Narath and D. C. Wallace, Nuclear magnetic resonance in cubic sodium tungsten bronzes, Phys. Rev. 127, 725–729 (1962).

    Google Scholar 

  187. W. R. Gardner and G. C. Danielson, Electrical resistivity and Hall coefficient of sodium tungsten bronze, Phys. Rev. 93, 36–51 (1954).

    Google Scholar 

  188. L. D. Muhlestein and G. C. Danielson, Seebeck effect in sodium tungsten bronze, Phys. Rev 160, 562–567 (1967).

    CAS  Google Scholar 

  189. M. J. Sienko and J. M. Berak, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 541–554, American Elsevier, New York (1970).

    Google Scholar 

  190. J. M. Berak and M. J. Sienko, Effect of oxygen deficiency on electrical transport properties of tungsten trioxide crystals, J. Solid State Chem. 2, 109–133 (1970).

    CAS  Google Scholar 

  191. S. Tanasaki, On the phase transition of tungsten trioxide below room temperature, J. Phys. Soc. Japan 15, 566–573 (1960).

    Google Scholar 

  192. A. D. Wadsley, The crystal structure of Na (2-x) V6O15, Acta Cryst. 8, 695–701 (1955).

    CAS  Google Scholar 

  193. J. H. Perlstein and M. J. Sienko, Single-crystal studies of electrical conductivity, Seebeck effect, and Hall voltage in sodium vanadium bronze and a crystal-field model of electron transport, J. Chem. Phys. 48, 174–181 (1968).

    CAS  Google Scholar 

  194. J. Graham and A. D. Wadsley, The crystal structure of the blue potassium molybdenum bronze, K0.28MoO3, Acta Cryst. 20, 93–100 (1966).

    CAS  Google Scholar 

  195. G. H. Bouchard, J. Perlstein, and M. J. Sienko, Solid-state studies of potassium molybdenum bronzes. Inorganic Chem. 6, 1682–1685 (1967).

    CAS  Google Scholar 

  196. D. S. Perloff, M. Vlasse, and A. Wold, Anisotropic electrical behavior of the blue potassium molybdenum bronze, K0.30MoO3, J. Phys. Chem. Solids 30, 1071–1076 (1969).

    CAS  Google Scholar 

  197. W. Fogle and J. H. Perlstein, Semiconductor-to-metal transition in the blue potassium molybdenum bronze, K0.30MoO3; example of a possible excitonic insulator, Phys. Rev. B 6, 1402–1412 (1972).

    CAS  Google Scholar 

  198. S. Methfessel and D. C. Mattis, in Handbuch der Physik (S. Flügge, ed.). Vol. 18/1, pp. 387–562, Springer-Verlag, Berlin (1968).

    Google Scholar 

  199. M. W. Shafer, J. B. Torrance, and T. Penney, in Magnetism and Magnetic Materials —1971 (AIP Conf. Proc. No. 5; C. D. Graham and J. J. Rhyne, eds.), pp. 840–844, American Institute of Physics, New York (1972).

    Google Scholar 

  200. T. Penney, M. W. Shafer, and J. B. Torrance, Insulator-metal transition and long-range magnetic order in EuO, Phys. Rev. B 5, 3669–3674 (1972).

    Google Scholar 

  201. J. B. Torrance, M. W. Shafer, and T. R. McGuire, Bound magnetic polarons and the insulator-metal transition in EuO, Phys. Rev. Lett. 29, 1168–1171 (1972).

    CAS  Google Scholar 

  202. D. E. Eastman, F. Holtzberg, and S. Methfessel, Photoemission studies of the electronic structure of EuO, EuS, EuSe, and GdS, Phys. Rev. Lett. 23, 226–229 (1969).

    CAS  Google Scholar 

  203. T. Kasuya, s-f Exchange interactions and magnetic semiconductors. Grit. Rev. Solid State Sci. 3, 131–164 (1972).

    CAS  Google Scholar 

  204. S. J. Cho, Spin-polarized energy bands in Eu chalcogenides by the augmented-plane-wave method, Phys. Rev. B 1, 4589–4603 (1970).

    Google Scholar 

  205. M. R. Oliver, J. O. Dinamock, A. L. McWhorter, and T. B. Reed, Conductivity studies in europium oxide, Phys. Rev. B5, 1078–1098 (1972).

    Google Scholar 

  206. S. von Molnar and T. Kasuya, in Proc. Tenth Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), pp. 233–242, USAEC Div. Tech. Inf., Springfield, Virginia (1970).

    Google Scholar 

  207. S. C. Moss and D. Adler, Amorphous silicon and germanium revisited: I. Structural aspects, Comments on Solid State Physics 5, 47–55 (1973).

    CAS  Google Scholar 

  208. D. E. Polk, Structural model for amorphous sihcon and germanium, J. Non-Crystall. Solids 5, 365–376 (1971).

    CAS  Google Scholar 

  209. S. C. Moss and J. F. Graczyk, in Proc. Tenth Int. Conf on the Physics of Semiconductors, Cambridge, Mass., 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), pp. 658–662, USAEC Div. Tech. Inform., Oak Ridge, Tennessee (1970).

    Google Scholar 

  210. M. L. Rudee and A. Howie, The structure of amorphous Si and Ge, Phil. Mag. 25, 1001–1007 (1972).

    CAS  Google Scholar 

  211. M. H. Brodsky, R. S. Title, K. Weiser, and G. D. Pettit, Structural, optical, and electrical properties of amorphous silicoti films, Phys. Rev. B I, 2632–2641 (1970).

    Google Scholar 

  212. G. S. Cargill, Anisotropic microstructure in evaporated amorphous germanium films, Phys. Rev. Lett. 28, 1372–1375 (1972).

    CAS  Google Scholar 

  213. F. L. Galeener, Optical evidence for a network of cracklike voids in amorphous germanium, Phys. Rev. Lett. 27, 1716–1719 (1971).

    CAS  Google Scholar 

  214. J. J. Hauser, Anisotropic electrical properties of amorphous germanium, Phys. Rev. Lett. 29, 476–479 (1972).

    CAS  Google Scholar 

  215. D. Adler and S. C. Moss, Amorphous silicon and germanium revisited: II. Electronic structure and transport. Comments on Solid State Physics, 5, 63–72 (1973).

    CAS  Google Scholar 

  216. S. C. Moss, P. Flynn, and L. O. Bauer, Impurity effects on the structure of amorphous sihcon and germanium prepared in various ways, Phil. Mag. 27, 441–456 (1973).

    CAS  Google Scholar 

  217. D. T. Pierce and W. E. Spicer, Electronic structure of amorphous Si from photoemission and optical studies, Phys. Rev. B 5, 3017–3029 (1972).

    Google Scholar 

  218. J. Sauvage, C. J. Mogab, and D. Adler, Temperature-dependent tunnelling into amorphous siHcon, Phil. Mag 25, 1305–1312 (1972).

    CAS  Google Scholar 

  219. M. H. Brodsky, D. Kaplan, and J. F. Ziegler, in Proc. Eleventh Int. Conf on the Physics of Semiconductors, Warsaw, 1972, pp. 529–535, Polish Scientific Publishers, Warsaw (1972).

    Google Scholar 

  220. R. Grigorovici and A. Vancu, Optical constants of amorphous silicon films near the main absorption edge. Thin Solid Films 2, 105–110 (1968).

    CAS  Google Scholar 

  221. J. E. Fischer and T. M. Donovan, Optical and photoelectric properties of amorphous silicon, J. Non-Crystall. Solids 8–10, 202–208 (1972).

    CAS  Google Scholar 

  222. M. L. Theye, Influence of annealing on the optical properties of amorphous germanium films. Mat. Res. Bull. 6, 103–118 (1971).

    CAS  Google Scholar 

  223. R. C. Chittick, J. H. Alexander, and H. F. Sterling, The preparation and properties of amorphous silicon, J. Electrochem. Soc. 116, 77–81 (1969).

    CAS  Google Scholar 

  224. M. Morgan and P. A. Walley, Localized conduction processes in amorphous germanium, Phil. Mag. 23, 661–671 (1971).

    CAS  Google Scholar 

  225. J. Stuke, in Conduction in Low-Mobility Materials (N. Klein, D. S. Tannhauser, and M. Pollack, eds.), pp. 193–206, Taylor and Francis, London (1971).

    Google Scholar 

  226. A. Lewis, Evidence for the Mott model of hopping conduction in the anneal stable state of amorphous silicon, Phys. Rev. Lett. 29, 1555–1558 (1972); Erratum, Phys. Rev. Lett. 30, 1238 (1973).

    CAS  Google Scholar 

  227. A. H. Clark, Electrical and optical properties of amorphous germanium, Phys. Rev. 154, 750–757 (1967).

    CAS  Google Scholar 

  228. A. Nwachuku and M. Kuhn, Tunneling into amorphous germanium fihns, Appl. Phys. Lett. 12, 163–165 (1968).

    CAS  Google Scholar 

  229. H. Piller and S. A. Khan, in Proc. Tenth Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), pp. 662–666, USAEC Div. Tech. Inform., Oak Ridge, Tennessee (1970).

    Google Scholar 

  230. J. Stuke, Review of optical and electrical properties of amorphous semiconductors, J. Non-Crystall. Solids 4, 1–26 (1970).

    CAS  Google Scholar 

  231. R. Grigorovici, N. Croitoru, and A. Denvenyo, Thermoelectric power in amorphous germanium, Phys. Stat. Sol 16, K143-K145 (1966).

    CAS  Google Scholar 

  232. M. Pollack, M. L. Knotek, H. Kurtzman, and H. Glick, DC conductivity of amorphous germanium and the structure of the pseudogap, Phys. Rev. Lett. 30, 856–859 (1973).

    Google Scholar 

  233. M. L. Knotek, M. Pollack, T. M. Donovan, and H. Kurtzman, Thickness dependence of hopping transport in amorphous-germanium films, Phys. Rev. Lett. 30, 853–856 (1973).

    CAS  Google Scholar 

  234. W. Beyer and J. Stuke, Thermoelectric power of amorphous semiconductors, J. Non-Crystall. Solids 8–10 321–325 (1972).

    CAS  Google Scholar 

  235. M. H. Broksky and R. J. Gambino, Electrical conduction in evaporated amorphous silicon films, J. Non-Crystall. Solids 8–10, 739–744 (1972).

    Google Scholar 

  236. M. Zavetova, S. Koc, and J. Zemek, Steep vs. exponential absorption edge in amorphous germanium: evidence for the effect of oxygen, Czech. J. Phys. 22, 429–431 (1972).

    CAS  Google Scholar 

  237. H. R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, J. Non-Crystall. Solids 8–10, 627–632 (1972).

    CAS  Google Scholar 

  238. A. J. Bennett and L. M. Roth, Calculation of the optical properties of amorphous SiOx materials, Phys. Rev. B 4, 2686–2696 (1971).

    Google Scholar 

  239. A. Mattheissen and C. Voigt, On the influence of temperature on the electrical conductivity of alloys, Ann. Physik Chemie (Leipzig) 122, 19–78 (1864).

    Google Scholar 

  240. F. Bloch, On the quantum mechanics of electrons in crystal lattices, Z. Physik 52, 555–600 (1928).

    CAS  Google Scholar 

  241. A. Sommerfeld and H. Bethe, Electron theory of metals, Handbuch der Physik 2412, 333–622 (1933).

    Google Scholar 

  242. J. Bardeen, Conductivity of monovalent metals, Phys. Rev 52, 688–697 (1937).

    CAS  Google Scholar 

  243. M. Bailyn, Transport in metals: IL Effect of the phonon spectrum and Umklapp processes at high and low temperatures, Phys. Rev. 120, 381–404 (1960).

    CAS  Google Scholar 

  244. J. E. Kunzler, in Ultra-High-Purity Metals, pp. 171–200, American Society for Metals, Metals Park, Ohio (1962).

    Google Scholar 

  245. G. J. van den Berg, Ph.D. Thesis, Univ. of Leiden, unpublished (1938).

    Google Scholar 

  246. G. K. White and S. B. Woods, Conductivity of a-manganese. Can. J. Phys. 35, 346–348 (1957).

    CAS  Google Scholar 

  247. P. G. deGennes and J. Friedel, Anomahes in the resistivity in certain magnetic metals, J. Phys. Chem. Solids 4, 71–77 (1958).

    Google Scholar 

  248. V. B. Zemov and Yu. V. Sharvin, Measurement of the resistance of high-purity tin at helium temperatures, Soviet Phys.—JETP 9, 737–741 (1959).

    Google Scholar 

  249. R. B. Dingle, The electrical conductivity of thin wires, Proc. Roy. Soc. (London) A201, 545–560 (1950).

    Google Scholar 

  250. J. L. Olsen, Electrical Transport in Metals, Interscience, New York (1962).

    Google Scholar 

  251. W. Meissner and B. Voigt, Measurements with the aid of liquid helium: XL Resistance of pure metals at low temperatures, Ann. Physik (Leipzig) 1, 761–797 (1930).

    Google Scholar 

  252. J. Kondo, Resistance minimum in dilute magnetic alloys, Progr. Theor. Phys. (Kyoto) 32, 37–49 (1964).

    CAS  Google Scholar 

  253. W. B. Pearson, Electron transport in copper and dilute alloys at low temperature: IV. Resistance minimum: temperature of occurrence as a function of solute concentration, Phil. Mag. 46, 920–923 (1955).

    CAS  Google Scholar 

  254. J. P. Franck, F. D. Manchester, and D. L. Martin, The specific heat of pure copper and of some dilute copper and iron alloys showing a minimum in the electrical resistance at low temperatures, Proc. Roy. Soc. (London) A263, 494–507 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Adler, D. (1975). The Imperfect Solid—Transport Properties. In: Hannay, N.B. (eds) Defects in Solids. Treatise on Solid State Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0829-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0829-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0831-7

  • Online ISBN: 978-1-4684-0829-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics