Skip to main content

Partition of Cells in Two-Polymer Aqueous Phases: A Surface Affinity Method for Cell Separation

  • Chapter

Part of the book series: Biological Separations ((BIOSEP))

Abstract

This chapter describes a highly sensitive and versatile method for the separation and subfractionation of cell populations based on a variety of surface properties (e.g., surface charge, membrane lipid composition, presence of specific receptors). Furthermore, subtle changes in membrane surface properties can be traced that occur as a function of normalin vivo processes (i.e., differentiation, maturation, age) or in vitro treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson, P. -A., 1970, Separation of cells and cell particles by countercurrent distribution, Sci. Tools 17:53.

    Google Scholar 

  • Albertsson, P. -A., 1971, Partition of Cell Particles and Macromolecules Wiley-Interscience, New York.

    Google Scholar 

  • Albertsson, P. -A., and Baird, G. D., 1962, Countercurrent distribution of cells, Exp. Cell Res. 28:296.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. E., Seaman, G. V. F., and Walter, H., 1971, Detection of differences in surface- charge-associated properties of cells by partition in two-polymer aqueous phase systems, Nature New Biol. 234:61.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. E., Seaman, G. V. F., Tamblyn, C. H., and Walter, H., 1975, Potential distributions in phase-separated aqueous polymer solutions, Biophys. J. 15:142a.

    Google Scholar 

  • Brooks, D. E., Levy, E. M., Nagaya, H., Vassar, P. S., and Walter, H., Subfractionation of human lymphocytes by countercurrent distribution in aqueous two-phase systems, in preparation.

    Google Scholar 

  • Brooks, D. E., Seaman G. V. F., and Walter, H., Potential distributions in phase separated aqueous polymer solutions, in preparation.

    Google Scholar 

  • Brunette, D. M., McCulloch, E. A., and Till, J. E., 1968, Fractionation of suspensions of mouse spleen cells by countercurrent distribution. Cell Tiss. Kinet. 1:319.

    CAS  Google Scholar 

  • Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100:119.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, E., Albertsson, P. -A., and Johansson, G., 1976, Hydrophobic surface properties of erythrocytes studied by affinity partition in aqueous two-phase systems, Molec. Cell. Biochem. 10:123.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, S. D., Taylor, P., and Barondes, S. H., 1975, Affinity partitioning of acetylcholine receptor enriched membranes and their purification. Nature (London) 254:441.

    Article  CAS  Google Scholar 

  • Gersten, D. M., and Bosmann, H. B., 1974a, Behavior in two-phase aqueous polymer systems of L5178Y mouse leukemic cells in the stationary phase of growth, Exp. Cell Res. 87:73.

    Article  PubMed  CAS  Google Scholar 

  • Gersten, D. M., and Bosmann, H. B., 1974b. Behavior in two-phase aqueous polymer systems of L5178Y mouse leukemic cells. IL The lag and exponential phases of growth, Exp. Cell Res. 88:225.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, G., 1970a, Partition of salts and their effects on partition of proteins in a dextran- poly(ethylene glycol)-water two-phase system, Biochim. Biophys. Acta 221:387.

    PubMed  CAS  Google Scholar 

  • Johansson, G., 1970b, Studies on aqueous dextran-poly(ethylene glycol) two-phase systems containing chaiiged poly(ethylene glycol). I. Partition of albumins, Biochim. Biophys. Acta 222:381.

    Article  PubMed  CAS  Google Scholar 

  • Johannson, G., 1974, Effects of salts on the partition of proteins in aqueous polymeric biphasic systems. Acta Chem. Scand. B 28:873.

    Article  Google Scholar 

  • Pertoft, H., 1969, The separation of rat liver cells in colloidal silica-polyethylene glycol gradients, Exp. Cell Res. 57:338.

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S., Walter, H., and Wayne, L. G., 1977, Altered surface properties of Escherichia coli associated with a specific amino acid change in the S12 ribosomal protein of streptomycin- resistant mutants, Antimicroh. Ag. Chemother. in press.

    Google Scholar 

  • Pinaev, G., Hoom, B., and Albertsson, P. -Â, 1976, Countercurrent distribution of HeLa and mouse mast cells in different stages of the life cycle,Exp. Cell Res. 98:127.

    Article  PubMed  CAS  Google Scholar 

  • Reitherman, R., Flanagan, S. D., and Barondes, S. H., 1973, Electromotive phenomena in partition of erythrocytes in aqueous polymer two phase systems, Biochim. Biophys. Acta 297:193.

    Article  PubMed  CAS  Google Scholar 

  • Ryden, J., and Albertsson, P. -Â., 1971, Interfacial tension of dextran-polyethylene glycol- water two-phase systems, J. Colloid Interface Sci. 37:219.

    Article  CAS  Google Scholar 

  • Sasakawa, S., and Walter, H., 1972, Partition behavior of native proteins in aqueous dextran- poly(ethylene glycol) phase systems. Biochemistry 11:2160.

    Article  Google Scholar 

  • Sasakawa, S., and Walter, H., 1974, Partition behavior of amino acids and small peptides in aqueous dextran-poly(ethylene glycol) phase systems. Biochemistry 13:29.

    Article  PubMed  CAS  Google Scholar 

  • Seaman, G. V. F., and Walter, H., 1971, Cell partition in aqueous, non-ionic dextran- polyethylene glycol phases: Effect of salt composition on the zeta potential of the phases, Fed. Proc. 30:1182a.

    Google Scholar 

  • Steck, T. L., 1974, Preparation of impermeable inside-out and rightside-out vesicles from erythrocyte membranes, in Methods in Membrane Biology, Vol. 2 (E. D. Kom, ed.), pp. 245–281, Plenum Press, New York.

    Google Scholar 

  • Van Deenen, L. L. M., and De Gier, J., 1974, Lipids of the red cell membrane, in The Red Blood CelKD. MacN. Surgenor, ed.), 2nd Ed., pp. 147–211, Academic Press, New York.

    Google Scholar 

  • Walter, H., 1969, Discussion in Red Cell Membrane, Structure and Function (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 368–370, Lippincott, Philadelphia.

    Google Scholar 

  • Walter, H., 1975, Partition of cells in two-polymer aqueous phases: A method for separating cells and for obtaining information on their surface properties, in Methods in Cell Biology Vol. 9 (D. M. Prescott, ed.), pp. 25–50, Academic Press, New York.

    Google Scholar 

  • Walter, H., and Coyle, R. P., 1968, Effect of membrane modification of human erythrocytes by enzyme treatment on their partition in aqueous dextran-polyethylene glycol two-phase systems, Biochim. Biophys. Acta 165:540.

    Article  CAS  Google Scholar 

  • Walter, H., and Krob, E. J., 1975, Alterations in membrane surface properties during cell differentiation as measured by partition in aqueous two-polymer phase systems: Rat intestinal epithelial cells, Exp. Cell Res. 91:6.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., and Krob, E. J., 1976a, Hydrophobic affinity partition in aqueous two-phase systems containing poly(ethylene glycol)-palmitate of rightside-out and mside-out vesicles from human erythrocyte membranes, FEBS Lett. 61:290.

    Article  CAS  Google Scholar 

  • Walter, H., and Krob, E. J., 1976b Partition in two-polymer aqueous phases reflects differences between membrane surface properties of erythrocytes, ghosts and membrane vesicles, Biochim. Biophys. Acta 455:8.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., and Nagaya, H., 1975, Separation of human rosette- and nonrosette-forming lymphoid cells by countercurrent distribution in an aqueous two-phase system. Cell. Immunol. 19:158.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., and Selby, F. W., 1%6, Counter-current distribution of red blood cells of slightly different ages, Biochim. Biophys. Acta 112:146.

    Google Scholar 

  • Walter, H., and Selby, F. W., 1967, Effects of DEAE-dextran on the partition of red blood cells in aqueous dextran-polyethylene glycol two-phase systems, Biochim. Biophys. Acta 148:517.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Selby, F. W., and Garza, R., 1967, On the countercurrent distribution of red blood cells: An addendum, Biochim. Biophys. Acta 136:148.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Garza, R., and Coyle, R. P., 1968a, Partition of DEAE-dextran in aqueous dextran-polyethylene glycol phases and its effect on the partition of cells in such systems, Biochim. Biophys. Acta 156:409.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Garza, R., and Selby, F. W., 1968b, Partition of fresh and stored erythrocytes in an aqueous dextran-polyethylene glycol two-phase system, Exp. Cell Res. 49:679.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., and Ascher, G. S., 1969a, Separation of lymphocytes and polymorphonuclear leukocytes by countercurrent distribution in aqueous two-polymer phase systems, Exp. Cell Res. 55:279.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., Garza R., and Ascher, G. S., 1969b, Partition and countercurrent distribution of erythrocytes and leukocytes from different species. Exp. Cell Res. 55:57.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Eriksson, G., Taube, O., and Albertsson, P. -A., 1971a, Analysis of synchronous and normal populations of Chlorella pyrenoidosa by countercurrent distribution in an aqueous two-polymer phase system, Exp. Cell Res. 64:486.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Miller, A., Krob, E. J., and Ascher, G. S., 1971b, Alterations in membrane surface properties of reticulocytes during maturation as determined by partition in two-polymer aqueous phase systems, Exp. Cell Res. 69:416.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Miller, A., Krob, E. J., and Ascher, G. S., 1972a, Membrane surface properties of reticulocytes from rats rendered severely anemic with phenylhydrazine as determined by partition in aqueous phase systems, Exp. Cell Res. 73:145.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Tung, R., Jackson, L. J., and Seaman, G. V. F., 1972b, The nature of the cell membrane charge measured by partition in aqueous two-polymer phase systems: Differentiation of classes of beef erythrocytes, Biochem. Biophys. Res. Commun. 48:565.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H. Krob, E. J., and Ascher, G. S., 1973a, Surface properties of rat bone marrow cells as determined by partition in two-polymer aqueous phase systems: Cells containing hemoglobin, Exp. Cell Res. 79:63.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., Ascher, G. S., and Seaman, G. V. F., 1973b, Partition of rat liver cells in aqueous dextran-polyethylene glycol phase systems, Exp. Cell Res. 82:15.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., Brooks, D. E., and Seaman, G. V. F., 1973c, Effect of acetaldehyde and glutaraldehyde fixation on the surface properties of red blood cells as determined by partition in aqueous phases, Exp. Cell Res. 80:415.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Tung, R., Krob, E. J., and Swingle, K. F., 1974, Membrane surface properties of red blood cells from x-irradiated rats as measured by partition in two-polymer aqueous phase systems, Radiat. Res. 59:614.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., and Ascher, G. S., 1975, Abnormal membrane surface properties during maturation of rat reticulocytes elicited by bleeding as measured by partition in two- polymer aqueous phases, Brit. J. Haematol. 31:149.

    Article  CAS  Google Scholar 

  • Walter, H., Krob, E. J., and Brooks, D. E., 1976a, Membrane surface properties other than charge involved in cell separation by partition in polymer, aqueous two-phase systems, Biochemistry 15:2959.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., and Tung, R., 1976b, Hydrophobic affinity partition in aqueous two- phase systems of erythrocytes from different species. Systems containing polyethylene glycol-pahnitate, Exp. Cell Res. 102:14.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L. G., and Walter, H., 1974, Separation of erythromycin-resistant and -susceptible subpopulations of Escherichia coli 15 by partition in two-polymer aqueous phases, Antimicroh. Ag. Chemother. 5:203.

    CAS  Google Scholar 

  • Weiser, M. M., 1973, Intestinal epithehal cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation,J. Biol. Chem. 248:2536.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Walter, H. (1977). Partition of Cells in Two-Polymer Aqueous Phases: A Surface Affinity Method for Cell Separation. In: Catsimpoolas, N. (eds) Methods of Cell Separation. Biological Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0820-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0820-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0822-5

  • Online ISBN: 978-1-4684-0820-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics