Skip to main content

Carbohydrate, Fat, and Amino Acid Metabolism in the Pregnant Woman and Fetus

  • Chapter
Principles and Prenatal Growth

Abstract

Throughout gestation, the human fetus accumulates the elements required for growth, oxidizes fuel transported from the mother, and excretes waste products transplacentally. In the last half of pregnancy, it also accumulates the energy stores which permit the independent maintenance of homeostasis during postnatal fasting. Thus, food ingested by the mother not only is consumed for her own needs but also is modified appropriately for uptake by the conceptus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, P. A. J., 1971, Control of glucose metabolism in the human fetus and newborn infant, Adv. Metab. Disord. 5:183.

    Google Scholar 

  • Adam, P. A. J., Teramo, K., Räihä, N., Gitlin, D., and Schwartz, R., 1969, Human fetal insulin metabolism early in gestation. Response to acute elevation of the fetal glucose concentration and placental transfer of human insulin-131I, Diabetes 18:409.

    Google Scholar 

  • Adam, P. A. J., Kekomäki, M., Rahiala, E.-L., and Schwartz, A. L., 1972, Autoregulation of glucose production by the isolated perfused human fetal liver, Pediatr. Res. 6:396 (abstract).

    Google Scholar 

  • Adam, P. A. J., Chlebowski, R., and Lowry, M., 1974, Fuel metabolism in the human fetus and newborn infant, Perinat. Med. 5:321.

    Google Scholar 

  • Adam, P. A. J., Glazer, G., and Rogoff, F., 1975a, Glucose production in the newborn dog. I. Effects of glucagon in vivo, Pediatr. Res. 9:816.

    Google Scholar 

  • Adam, P. A. J., Räihä, N., Rahiala, E.-L., and Kekomäki, M., 1975a, Oxidation of glucose and D-β-OH-butyrate by the early human fetal brain, Acta Paediatr. Scand. 64:17.

    Google Scholar 

  • Adam, P. A. J., Kalhan, S. C., and Savin, S. M., 1976, Fuel metabolism in the infant of the diabetic mother: Attenuated mobilization of alternate fuels, in: Symposium on Diabetes and other Endocrine Disorders during Pregnancy and in the Newborn (M. New and R. Fiser, eds.) pp. 51–67, Alan R. Liss Inc., New York.

    Google Scholar 

  • Adam, P. A. J., Schwartz, A. L., Rahiala, E.-L., and Kekomäki, M., 1978, Glucose production in midterm human fetus. I. Autoregulation of glucose uptake, Am. J. Physiol. 234 (in press).

    Google Scholar 

  • Aeberhard, E., Grippo, J., and Menkes, J. H., 1969, Fatty acid synthesis in the developing brain, Pediatr. Res. 3:590.

    Google Scholar 

  • Alford, F. P., Bloom, S. R., Nabarro, J. D. N., Hall, R., Besser, G. M., Coy, D. H., Kastin, A. J., and Schally, A. V., 1974, Glucagon control of fasting glucose in man, Lancet 2:974.

    Google Scholar 

  • Arinze, I. J., 1975, On the development of phosphoenolpyruvate carboxykinase and gluconeogenesis in guinea pig liver, Biochem. Biophys. Res. Commun. 65:184.

    Google Scholar 

  • Assan, R., and Boillot, J., 1971, Pancreatic glucagon and glucagon-like material in tissues and plasmas from human foetuses 6-12 weeks old, in: Nutricia SymposiumMetabolic Processes in the Foetus and Newborn Infant, (J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 210–219, Williams and Wilkins Co., Baltimore; H. E. Stenfert Kroese N.V.-Leiden.

    Google Scholar 

  • Assan, R., and Girard, J. R., 1976, Glucagon in the human fetal pancreas, in press.

    Google Scholar 

  • Aubert, M. L., Grumbach, M. M., and Kaplan, S. L., 1975, The ontogenesis of human fetal hormones. III. Prolactin, J. Clin. Invest. 56:155.

    Google Scholar 

  • Aurrichio, S., and Rigillo, N., 1960, Glucose-6-phosphatase activity of the human fetal liver, Biol. Neonat. 2:146.

    Google Scholar 

  • Baird, J. D., 1969, Some aspects of carbohydrate metabolism in pregnancy with special reference to the energy metabolism and hormonal status of the infant of the diabetic woman and the diabetogenic effect of pregnancy, J. Endocrinol. 44:139.

    Google Scholar 

  • Ballard, F. J., Hanson, R. W., and Kronfeld, D. S., 1969, Gluconeogenesis and lipogenesis in tissue from ruminant and nonruminant animals, Fed. Proc. 28:218.

    Google Scholar 

  • Battaglia, F. C., Behrman, R. E., Meschia, G., Seeds, A. E., and Bruns, P. D., 1968, Clearance of inert molecules, Na and Cl irons across the primate placenta, Am. J. Obstet. Gynecol. 102:1135.

    Google Scholar 

  • Bayer, S. M., and McMurray, W. C., 1967, J. Neurochem. 14:695.

    Google Scholar 

  • Beatty, C. H., and Bocek, R. M., 1970, Metabolism of palmitate by fetal, neonatal, and adult muscle of the rhesus monkey, Am. J. Physiol. 219:1311.

    Google Scholar 

  • Beatty, C. H., Basinger, G. M., and Bocek, R. M., 1966, Pentose cycle activity in muscle from fetal, neonatal and infant rhesus monkeys, Arch. Biochem. Biophys. 117:275.

    Google Scholar 

  • Beatty, C. H., Young, M. K., Dwyer, D., and Bocek, R. M., 1972, Glucose utilization of cardiac and skeletal muscle homogenates from fetal and adult rhesus monkeys, Pediatr. Res. 6:813.

    Google Scholar 

  • Beatty, C. H., Young, M. K., and Bocek, R. M., 1976, Control of glycolysis in skeletal muscle from fetal rhesus monkeys, Pediatr. Res. 10:149.

    Google Scholar 

  • Beck, P., 1969, Progestin enhancement of the plasma insulin response to glucose in the rhesus monkey, Diabetes 18:146.

    Google Scholar 

  • Beck, P., and Daughaday, W., 1967, Human placental lactogen: Studies of its acute metabolic effects and disposition in man, J. Clin. Invest. 46:103.

    Google Scholar 

  • Benedict, F. G., 1915. A study of prolonged fasting, Carnegie Inst. Washington Publ. 203.

    Google Scholar 

  • Benedict, F. G., and Joslin, E. P., 1912, A study of metabolism in severe diabetes, Carnegie Inst. Washington Publ. 176.

    Google Scholar 

  • Bier, D. M., Leake, R. D., Arnold, K. J., Haymond, M., Gruenke, L. D., Sperling, M. A., and Kipnis, D. M., 1976, Glucose production rates in infancy and childhood, Pediatr. Res. 10:405 (abstract).

    Google Scholar 

  • Blackshear, P. J., Holloway, P. A. H., and Alberti, K. G. M. M., 1974, The effects of starvation and insulin on the release of gluconeogenic substrates from the extrasplanchnic tissues in vivo, FEBS Lett. 48:310.

    Google Scholar 

  • Bleicher, S. J., O’Sullivan, J. B., and Freinkel, N., 1964, Carbohydrate metabolism in pregnancy. V. The interrelationships among glucose, insulin, and free fatty acids in late pregnancy, N. Engl. J. Med. 271:866.

    Google Scholar 

  • Bocek, R. M., and Beatty, C. H., 1969, Effect of insulin on carbohydrate metabolism of fetal rhesus monkey muscle, Endocrinology 85:615.

    Google Scholar 

  • Bocek, R. M., and Beatty, C. H., 1976, Cyclic AMP phosphodiesterase activity in fetal and adult muscle, Develop. Biol. 48:382.

    Google Scholar 

  • Bocek, R. M., Basinger, G. M., and Beatty, C. H., 1969, Glycogen synthase, phosphorylase and glycogen content of developing rhesus muscle, Pediatr. Res. 3:525.

    Google Scholar 

  • Bocek, R. M., Young, M. K., and Beatty, C. H., 1973, Effect of insulin and epinephrine on the carbohydrate metabolism and adenylate cyclase activity of rhesus fetal muscle, Pediatr. Res. 7:787.

    Google Scholar 

  • Bossi, E., and Greenberg, R. E., 1972, Sources of blood glucose in the rat fetus, Pediatr. Res. 6:765.

    Google Scholar 

  • Boyd, R. D., Morris, F. H., Meschia, G., Makowski, E. L., and Battaglia, F. C., 1973, Growth of glucose and oxygen uptakes by fetuses of fed and starved ewes, Am. J. Physiol. 225:897.

    Google Scholar 

  • Breuer, E., Barta, E., Pappova, E., and Zlatos, L., 1967, Developmental changes of myocardial metabolism. I. Peculiarities of cardiac carbohydrate metabolism in the early postnatal period in dogs, Biol. Neonat. 11:367.

    Google Scholar 

  • Breuer, E., Barta, E., Zlatos, L., and Pappova, E., 1968, Developmental changes of myocardial metabolism. II. Myocardial metabolism of fatty acids in the early postnatal period in dogs, Biol. Neonat. 12:54.

    Google Scholar 

  • Buckley, B. M., and Williamson, D. H., 1973, Acetoacetate and brain lipogenesis. Developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain, Bioch. J. 132:653.

    Google Scholar 

  • Burd, L. I., Jones, M. D., Simmons, M. A., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1975, Placental production and fetal utilisation lactate and pyruvate, Nature 254:710.

    Google Scholar 

  • Burt, R. L., 1956, Peripheral utilization of glucose in pregnancy: Insulin tolerance, Obstet. Gynecol. 7:658.

    Google Scholar 

  • Buschiazzo, H., Exton, J. H., and Park, C. R., 1970, Effects of glucose on glycogen synthetase, phosphorylase, and glycogen deposition in the perfused rat liver, Proc. Natl. Acad. Sci. U.S.A. 65:383.

    Google Scholar 

  • Buse, M. G., Biggers, J. F., Frederici, K. H., and Buse, J. F., 1972, Oxidation of branched chain ammo acids by isolated hearts and diaphragms of the rat, J. Biol. Chem. 247:8085.

    Google Scholar 

  • Cahill, G. F., Jr., 1972, Prenatal nutrition of lambs, bears—and babies? Pediatrics 50:357.

    Google Scholar 

  • Cahill, G. F., Jr., Herrera, M. G., Morgan, A. P., Soeldner, J. S., Steinke, J., Levy, P. L., Reichard, G. A., Jr., and Kipnis, D. M., 1966, Hormone-fuel interrelationships during fasting, J. Clin. Invest. 45:1751.

    Google Scholar 

  • Šapkova, A., and Jirasek, J. E., 1968, Glycogen reserves in organs of human foetuses in the first half of pregnancy, Biol. Neonat. 13:129.

    Google Scholar 

  • Chang, L. O., 1977, The development of pyruvate carboxylase in rat liver mitochondria, Pediatr. Res. 11:6.

    Google Scholar 

  • Char, V. C., and Creasy, R. K., 1976, Lactate and pyruvate as fetal metabolic substrates, Pediatr. Res. 10:231.

    Google Scholar 

  • Chen, C. H., Adam, P. A. J., Laskowski, D. E., McCann, M. L., and Schwartz, R., 1965, The plasma free fatty acid composition and blood glucose of normal and diabetic pregnant women and of their newborns, Pediatrics 36:843.

    Google Scholar 

  • Chlebowski, R. T., and Adam, P. A. J., 1975, Glucose production in the newborn dog. II. Evaluation of autonomic and enzymatic control in isolated perfused canine liver, Pediatr. Res. 9:821.

    Google Scholar 

  • Christensen, P. J., Date, J. W., Schonheyder, F., and Volqvartz, K., 1957, Amino acids in blood plasma and urine during pregnancy, Scand. J. Clin. Lab. Invest. 9:54.

    Google Scholar 

  • Cockburn, F., Robins, S. P., and Forfar, J. O., 1970, Free amino acid concentrations in fetal fluids, Br. Med. J. 3:747.

    Google Scholar 

  • Cooper, J. R., Bloom, F. E., and Roth, R. H., 1974, The Biochemical Basis of Neuropharmacology, Oxford University Press, London, pp. 202–233.

    Google Scholar 

  • Costrini, N. V., and Kalkhoff, R. K., 1971, Relative effects of pregnancy, estradiol, and progesterone on plasma insulin and pancreatic islet insulin secretion, J. Clin. Invest. 50:992.

    Google Scholar 

  • Cremer, J., 1971, Incorporation of label from D-β-hydroxy[14C]butyrate and [3-14C]acetoacetate into amino acids in rat brain in vivo, Bioch. J. 122:135.

    Google Scholar 

  • Cross, K. W., Tizard, J. P. M., and Trythall, D. A. R., 1957, The gaseous metabolism of the newborn infant, Acta Paediatr. 46:265.

    Google Scholar 

  • Dahlquist, G., Persson, U., and Persson, B., 1972, The activity of D-ß-hydroxybutyrate dehydrogenase in fetal, infant and adult rat brain, and the influence of starvation, Biol. Neonat. 20:40.

    Google Scholar 

  • Dancis, J., Money, W. L., Springer, D., and Levitz, M., 1968, Transport of amino acids by placenta, Am. J. Obstet. Gynecol. 101:820.

    Google Scholar 

  • Dancis, J., Jansen, V., Kayden, H. J., Schneider, H., and Levitz, M., 1973, Transfer across perfused human placenta. EL Free fatty acids, Pediatr. Res. 7:192.

    Google Scholar 

  • Dancis, J., Jansen, V., and Levitz, 1976, Transfer across perfused human placenta. IV. Effect of protein binding on free fatty acids, Pediatr. Res. 10:5.

    Google Scholar 

  • Daniel, P. M., Love, E. R., Moorehouse, S. R., Pratt, O. E., and Wilson, P., 1971, Factors influencing utilisation of ketone-bodies by brain in normal rats and rats with ketoacidosis, Lancet 2:637.

    Google Scholar 

  • Daniel, R. R., Metzger, B. F., Freinkel, N., Faloona, G. R., Unger, R. H., and Nitzan, M., 1974, Carbohydrate metabolism in pregnancy. XL Response of plasma glucagon to overnight fast and oral glucose during normal pregnancy and in gestational diabetes, Diabetes 23:771.

    Google Scholar 

  • Dawes, G. S., and Shelley, H. J., 1968, Physiological aspects of carbohydrate metabolism in the fetus and newborn, in: Carbohydrate Metabolism and Its Disorders (F. Dickens, R. J. Randle, and W. J. Whelan, eds.), Vol. 2, Academic Press, New York.

    Google Scholar 

  • Dawkins, M. J. R., 1963, Glycogen synthesis and breakdown in rat liver at birth, Q. J. Exp. Physiol. 48:265.

    Google Scholar 

  • Derom, R., 1964, Anaerobic metabolism in the human fetus: I. Normal delivery, Am. J. Obstet. Gynecol. 89:241.

    Google Scholar 

  • Dhopeshwarkar, G. A., and Mead, J. F., 1969, Fatty acid uptake by the brain. II. Incorporation of [1-14C]palmitic acid into the adult rat brain, Biochim. Biophys. Acta 187:461.

    Google Scholar 

  • Dhopeshwarkar, G. A., Maier, R., and Mead, J. F., 1969, Incorporation of [1-14C]acetate into the fatty acids of developing brain, Biochim. Biophys. Acta 187:6.

    Google Scholar 

  • Dierks-Ventling, C., 1971, Prenatal induction of ketone-body enzymes in the rat, Biol. Neonat. 19:426.

    Google Scholar 

  • Dingman, W., and Sporn, M. B., 1959, The penetration of proline and proline derivatives into brain, J. Neurochem. 4:148.

    Google Scholar 

  • Dobbing, J., 1974, The later development of the brain and its vulnerability, in: Scientific Foundations of Paediatrics (J. A. Davis and J. Dobbing, eds.), pp. 565–577, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Edwards, A. V., and Silver, M., 1970, The glycogenolytic response to stimulation of the splanchnic nerves in adrenolectomized calves, J. Physiol. 211:109.

    Google Scholar 

  • Eisen, H. J., Goldfine, I. D., and Glinsmann, W. H., 1973, Regulation of hepatic glycogen synthesis during fetal development: Roles of hydrocortisone, insulin, and insulin receptors, Proc. Natl. Acad. Sci. U.S.A. 70:3454.

    Google Scholar 

  • Felig, P., 1973a, The glucose-alanine cycle, Metabolism 22:179.

    Google Scholar 

  • Felig, P., 1973a, Maternal and fetal fuel homeostasis in human pregnancy, Am. J. Clin. Nutr. 26:998.

    Google Scholar 

  • Felig, P., 1975, Amino acid metabolism in man, Annu. Rev. Biochem. 44:933.

    Google Scholar 

  • Felig, P., and Lynch, V., 1970, Starvation in human pregnancy: Hypoglycemia, hypoinsulinemia, and hyperketonaemia, Science 170:990.

    Google Scholar 

  • Felig, P., Marliss, E., Owen, O. E., and Cahill, G. F., Jr., 1969a, Blood glucose and gluconeogenesis in fasting man, Arch. Intern. Med. 123:293.

    Google Scholar 

  • Felig, P., Marliss, E., Owen, O. E., and Cahill, G. F., Jr., 1969b, Role of substrate in the regulation of hepatic gluconeogenesis in man, Adv. Enzyme Regul. 7:41.

    Google Scholar 

  • Felig, P., Owen, O. E., Wahren, J., and Cahill, G. F., Jr., 1969c, Amino acid metabolism in prolonged starvation, J. Clin. Invest. 48:584.

    Google Scholar 

  • Felig, P., Pozefsky, T., Marliss, E., and Cahill, G. F., Jr., 1970, Alanine: Key role in gluconeogenesis, Science 167:1003.

    Google Scholar 

  • Felig, P., Kim, Y. J., Lynch, V., and Hendler, R., 1972, Amino acid metabolism during starvation in human pregnancy, J. Clin. Invest. 51:1195.

    Google Scholar 

  • Felig, P., Wahren, J., Karl, L, Cerasi, E., Luft, R., and Kipnis, D. M., 1973a, Glutamine and glutamate metabolism in normal and diabetic subjects, Diabetes 22:573.

    Google Scholar 

  • Felig, P., Wahren, J., and Raf, L., 1973a, Evidence of interorgan amino acid transport by blood cells, Proc. Natl. Acad. Sci. U.S.A. 70:1775.

    Google Scholar 

  • Felig, P., Wahren, J., and Hendler, R., 1975, Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism, Diabetes 24:468.

    Google Scholar 

  • Fisher, M. M., and Kerly, M., 1964, Amino acid metabolism in perfused liver, J. Physiol. 174:273.

    Google Scholar 

  • Freinkel, N., 1969, Homeostatic Factors in Fetal Carbohydrate Metabolism, Vol. 4, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Frienkel, N., and Metzger, B., 1975, Some considerations of fuel economy in the fed state during late human pregnancy, in: Early Diabetes in Early Life (R. A. Camerini-Davalos and H. S. Cole, eds.), Academic Press, New York.

    Google Scholar 

  • Freinkel, N., Metzger, B., Nitzan, N., Daniel, R., Surviaczynska, B. Z., and Nagel, T. C., 1974, Facilitated anabolism in late pregnancy: Some novel material compensations for accelerated starvation, in: Proceedings, VIII Congress of the International Diabetes Federation, Excerpta Medica.

    Google Scholar 

  • Friedman, E. A., Gray, M. J., Grynfogel, M., Hutchinson, D. L., Kelly, W. T., and Plentl, A. A., 1960, Distribution of C14-labeled lactic acid and bicarbonate in pregnant primates, J. Clin. Invest. 39:227.

    Google Scholar 

  • Gaspard, V. J., Sandront, H. M. Luyckx, A. S., and Lefebvre, P. J., 1975, The control of human placental lactogen (HPL) secretion and its interrelation with glucose and lipid metabolism in pregnancy, in: Early Diabetes in Early Life (R. A. Camerini-Davalos and H. S. Cole, eds.), Academic Press, New York.

    Google Scholar 

  • Gennser, G., Lundquist, I., and Nilsson, E., 1971, Glycogenolytic activity in the liver of the human foetus, Biol. Neonat. 19:1.

    Google Scholar 

  • Ghadimi, H., and Pecora, P. D., 1964, Free amino acids of cord plasma as compared with maternal plasma during pregnancy, Pediatrics 33:500.

    Google Scholar 

  • Girard, J. R., 1975, Metabolic fuels of the fetus, Isr. J. Med. Sci. 11:591.

    Google Scholar 

  • Gitlin, D., and Biasucci, A., 1969, Ontogenesis of immunoreactive growth hormone, follicle-stimulating hormone, thyroid-stimulating hormone, luteinizing hormone, chorionic prolactin and chorionic gonadotropin in the human conceptus, J. Clin. Endocrinol. Metab. 29:926.

    Google Scholar 

  • Girard, J. R., Caquet, D., Bal, D., and Guillet, I., 1973, Control of rat liver phosphorylase, glucose-6-phosphatase, and phosphoenopyravate carboxykinase activities by insulin and glucagon during the perinatal period, Enzyme 15:272.

    Google Scholar 

  • Girard, J. R., Kevran, A., Soufflet, M. S., and Assan, R., 1974, Factors affecting the secretion of insulin and glucagon by the rat fetus, Diabetes 23:310.

    Google Scholar 

  • Glendening, M. D., Margolis, A. J., and Page, E. W., 1961, Amino acid concentrations in fetal and maternal plasma, Am. J. Obstet. Gynecol. 81:591.

    Google Scholar 

  • Glinsmann, W., Pauk, G., and Hern, E., 1970, Control of rat liver glycogen synthetase and phosphorylase activities by glucose, Biochem. Biophys. Res. Commun. 39:774.

    Google Scholar 

  • Glinsmann, W. H., Eisen, H. J., Lynch, A., and Chez, R. A., 1975, Glucose regulation by isolated near term fetal monkey liver, Pediatr. Res. 9:600.

    Google Scholar 

  • Goodner, C. J., and Thompson, D. J., 1967, Glucose metabolism in the fetus in utero: The effect of maternal fasting and glucose loading in the rat, Pediatr. Res. 1:443.

    Google Scholar 

  • Goodner, C. J., Conway, M. J., and Werrbach, J. H., 1969, Relation between plasma glucose levels of mother and fetus during maternal hyperglycemia, hypoglycemia, and fasting in the rat, Pediatr. Res. 3:121.

    Google Scholar 

  • Gottstein, U., Müller, W., Berghoff, U., Gartner, H., and Held, K., 1971, Zur Utilization von nichtveres-terten Fettsauren und Ketonkorpen im Gehirn des Menschen, Klin. Wochenschr. 49:406.

    Google Scholar 

  • Greengard, O., 1973, Effects of hormones on development of fetal enzymes, Clin. Pharmacol. Ther. 14:721.

    Google Scholar 

  • Gresham, E. L., Simons, P. S., and Battaglia, F. C., 1971, Maternal-fetal urea concentration difference in man: Metabolic significance, J. Pediatr. 79:809.

    Google Scholar 

  • Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L., and Meschia, G., 1972, Production and excretion of urea by the fetal lamb, Pediatrics 50:372.

    Google Scholar 

  • Gross, I., and Warshaw, J. B., 1974, Fatty acid synthesis in developing brain: Acetyl-CoA carboxylase activity, Biol. Neonat. 25:365.

    Google Scholar 

  • Grumbach, M. M., Kaplan, S. L., Sciarra, J. J., and Burr, I. M., 1968, Chorionic growth hormone-prolactin (CGP): secretion, disposition, biological activity in man, and postulated function as the “growth hormone ” of the second half of pregnancy, Ann. N.Y. Acad. Sci. 148:501.

    Google Scholar 

  • Hahn, P., and Skala, J., 1970, Some enzymes of glucose metabolism in the human fetus, Biol. Neonat. 16:362.

    Google Scholar 

  • Hanson, R. W., Reshef, L., and Ballard, J., 1975, Hormonal regulation of hepatic P-enolpyruvate carboxykinase (GTP) during development, Fed. Proc. 34:166.

    Google Scholar 

  • Havel, R. J., 1972, Caloric homeostasis and disorders of fuel transport, N. Engl. J. Med. 287:1186.

    Google Scholar 

  • Havel. R. J., Kane, J. P., Balasse, E. O., Segel, N., and Basso, L. V., 1970, Splanchnic metabolism of free fatty acids and production of triglycérides of very low density lipoproteins in normotriglyceri-demic and hypertriglyceridemic humans, J. Clin. Invest. 49:2017.

    Google Scholar 

  • Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem. J. 122:13.

    Google Scholar 

  • Hendricks, C. H., 1957, Studies on lactic acid metabolism in pregnancy and labor, Am. J. Obstet. Gynecol. 73:492.

    Google Scholar 

  • Herrera, E., Knopp, R. H., and Freinkel, N., 1969, Carbohydrate metabolism in pregnancy. VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted rat, J. Clin. Invest. 48:2260.

    Google Scholar 

  • Himwich, W. A., Petersen, J. C., and Allen, M. L., 1957, Hematoencephalic exchange as a function of age. Neurology 7: 705

    Google Scholar 

  • Houssay, B. A., Foglia, V. G., and Rodrigues, R. R., 1954, Production or prevention of some types of experimental diabetes by oestrogen or corticosteroids, Acta Endocrinol. 17:146.

    Google Scholar 

  • Huang, F. L., and Glinsmann, W. H., 1975, Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinase, Proc. Natl. Acad. Sci. U.S.A. 72:3004.

    Google Scholar 

  • Huang, F. L., and Glinsmann, W. H., 1976, A second heat-stable protein inhibitor of phosphorylase phosphatase from rabbit muscle, FEBS Lett. 62:326.

    Google Scholar 

  • Huang, K.-P., Huang, F. L., Glinsmann, W. H., and Robinson, J. C., 1975, Regulation of glycogen synthetase activity by two kinases, Biochem. Biophys. Res. Commun. 65:1163.

    Google Scholar 

  • Huang, K.-P., Huang, F. L., Glinsmann, W. H., and Robinson, J. C., 1976, Effect of limited proteolysis on activity and phosphorylation of rabbit muscle glycogen synthetase, Arch Biochem. Biophys. 173:162.

    Google Scholar 

  • Hugget, A. St. G., 1961, Carbohydrate metabolism in placenta and foetus, Br. Med. Bull 17:122.

    Google Scholar 

  • Hull, D., 1974, The function and development of adipose tissue, in: Scientific Foundations of Paediatrics (J. A. Davis and J. Dobbing, eds.), pp. 440–455, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Hultman, E., and Nilsson, L. H., 1971, Liver glycogen in man. Effect of different diets and muscular exercise, Adv. Exp. Med. Biol. 11:143.

    Google Scholar 

  • Itoh, T., and Quastel, J. H., 1970, Acetoacetate metabolism in infant and adult rat brain in vitro, Bioch. J. 116:641.

    Google Scholar 

  • Jacquot, R., and Kretschmer, N., 1964, Effect of fetal decapitation on enzymes of glycogen metabolism, J. Biol. Chem. 239:1301.

    Google Scholar 

  • James, E. J., Raye, J. R., Gresham, E. L., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1972, Fetal oxygen consumption, carbon dioxide production, and glucose uptake in a chronic sheep preparation, Pediatrics 50:361.

    Google Scholar 

  • Jones, M. D., Jr., Burd, L. I., Makowski, G., and Battaglia, F. C., 1976, Cerebral metabolism in sheep: a comparative study of the adult, the lamb, and the fetus, Am. J. Physiol. 229:235.

    Google Scholar 

  • Jonxis, J. H. P., Van der Vengt, J. J., DeGroot, C. J., Boersma, E. R., and Meijers, E. D. K., 1967, The metabolic rate in praemature, dysmature, and sick infants in relation to environmental temperature, in: Aspects of Praematurity and Dysmaturity (Nutricia Symposium) (J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 201–209, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Josimovich, J. B., and Brande, B. I., 1961, Chemical properties and biologic effects of human placental lactogen (HPL), Trans. N.Y. Acad. Sci. 27:161.

    Google Scholar 

  • Josimovich, J. B., and MacLaren, J. A., 1962, Presence in the human placenta and term serum of a highly lactogenic substance immunologically related to pituitary growth hormone, Endocrinology 71: 209.

    Google Scholar 

  • Jost, A., and Picon, L., 1970, Hormonal control of fetal development and metabolism, Adv. Metab. Disord. 4:123.

    Google Scholar 

  • Kahng, M. W., Sevdalian, D. A., and Tildon, J. T., 1974, Substrate oxidation and enzyme activities of ketone-body metabolism in the developing pig, Biol. Neonat. 24:187.

    Google Scholar 

  • Kalhan, S. C., Savin, S. M., and Adam, P. A. J., 1976a, Measurement of glucose turnover in the human newborn with glucose-1-13C, J. Clin. Endocrinol. Metab. 43:704.

    Google Scholar 

  • Kalhan, S. C., Savin, S. M., Uga, N., and Adam, P. A. J., 1976a, Quantification of glucose turnover with glucose-1-13C tracer: Attenuated glucose production in newborn infants of diabetic mothers, Pediatr. Res. 10:411 (abstract).

    Google Scholar 

  • Kalkhoff, R. R., Richardson, B. I., and Beck, P., 1969, Relative effects of pregnancy, human placental lactogen and prednisone on carbohydrate tolerance in normal and subclinical diabetic subjects, Diabetes 18:153.

    Google Scholar 

  • Kaplan, S. L., Grumbach, M. M., and Shepard, T. H., 1972, The ontogenesis of human fetal hormones. I. Growth hormone and insulin, J. Clin. Invest. 51:3080.

    Google Scholar 

  • Kayden, H. J., Dancis, J., and Money, W. L., 1969, Transfer of lipids across the guinea pig placenta, Am. J. Obstet. Gynecol. 104:564.

    Google Scholar 

  • Kerr, G. R., 1968, The free amino acids of serum during development of Macaca mullatta. II. During pregnancy and fetal life, Pediatr. Res. 2:493.

    Google Scholar 

  • Kerr, G. R., Campbell, J. A., Helmuth, A. C., and Waisman, H. A., 1971, Growth and development of the fetal rhesus monkey (Macaca mulatto). II. Total nitrogen, protein, lipid, glycogen and water composition of major organs, Pediatr. Res. 5:151.

    Google Scholar 

  • Kim, Y. J., and Felig, P., 1971, Plasma chorionic somatomammotropin levels during starvation in midpregnancy, J. Clin. Endocrinol. 32:864.

    Google Scholar 

  • Kim, Y. K. K., and Felig, P., 1972, Maternal and amniotic fluid substrate levels during calorie deprivation in human pregnancy, Metabolism 21:507.

    Google Scholar 

  • King, K. C., Adam, P. A. J., Laskowski, D. E., and Schwartz, R., 1971a, Sources of fatty acids in the newborn, Pediatrics 47:192.

    Google Scholar 

  • King, K. C., Butt, J., Raivio, K., Räihä, N., Roux, J., Teramo, K., Yamaguchi, K., and Schwartz, R., 1971b, Human maternal and fetal insulin response to arginine, N. Engl. J. Med. 285:607.

    Google Scholar 

  • Kirby, L., and Hahn, P., 1973, Enzyme induction in human fetal liver, Pediatr. Res. 7:75.

    Google Scholar 

  • Klee, C. B., and Sokoloff, L., 1967, Changes in D (−)-β-hydroxybutyric dehydrogenase activity during brain maturation in the rat, J. Biol. Chem. 242:3880.

    Google Scholar 

  • Kuhl, C., and Holst, J. J., 1976, Plasma glucagon and the insulin-glucagon ratio in gestational diabetes, Diabetes 25:16.

    Google Scholar 

  • Kuhl, C., Gaede, P., Klebe, J. G., and Pederson, J. G., 1975, Human placental lactogen concentration during physiological fluctuations of serum glucose in normal pregnant and gestational diabetic women, Acta Endocrinol. 80:365.

    Google Scholar 

  • Lajtha, A., 1958, Amino acid and protein metabolism of the brain. II. The uptake of L-lysine by brain and other organs of the mouse at different ages, J. Neurochem. 2:209.

    Google Scholar 

  • Lajtha, A., and Toth, J., 1961, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216.

    Google Scholar 

  • Lemons, J. A., Adcock, E. W., III, Jones, M. D., Jr., Naughton, M. A., Meschia, G., and Battaglia, F. A., 1976, Umbilical uptake of amino acids in the unstressed fetal lamb, J. Clin. Invest. 58:1428.

    Google Scholar 

  • Levitsky, L. L., Paton, J. B., Fisher, D. E., and Delannoy, C. W., 1976, Blood levels of gluconeogenic precursors and renal gluconeogenesis in the fasting baboon infant, Pediatr. Res. 10:412 (abstract).

    Google Scholar 

  • Lind, T., and Hytten, F. E., 1970, Relation of amniotic fluid volume to fetal weight in the first half of pregnancy, Lancet 1:1147.

    Google Scholar 

  • Lindblad, B. S., and Baldesten, A., 1967, The normal venous plasma free amino acid levels of non-pregnant women and of mother and child during delivery, Acta Paediatr. Scand. 56:37.

    Google Scholar 

  • Lindblad, B. S., and Zetterström, R., 1968, The venous plasma free amino acid levels of mother and child during delivery. H. After short gestation and gestation complicated by hypertension with special reference to the “small-for-dates ” syndrome, Acta Paediatr. Scand. 57:195.

    Google Scholar 

  • Lockwood, E. A., and Bailey, F., 1971, The course of ketosis, and the activity of key enzymes of ketogenesis and ketone-body utilization during development of the postnatal rat, Biochem. J. 124:249.

    Google Scholar 

  • Lowry, M. F., and Adam, P. A. J., 1975, Lack of gluconeogenesis from alanine at birth, Pediatr. Res 9:353 (abstract).

    Google Scholar 

  • Maddaiah, V. T., and Madsen, N. B., 1966a, Kinetics of purified liver phosphorylase, J. Biol. Chem. 241:3873.

    Google Scholar 

  • Maddaiah, V. T., and Madsen, N. B., 1966a, Studies on the biological control of glycogen metabolism in liver. I. State and activity pattern of glycogen phosphorylase, Biochim. Biophys. Acta 121:261.

    Google Scholar 

  • Makowski, E. L., Schneider, J. M., Tsoulos, N. G., Colwill, J. R., Battaglia, F. C., and Meschia, G., 1972, Cerebral blood flow, oxygen consumption, and glucose utilization of fetal lambs in utero, Am. J. Obstet. Gynecol. 114:292.

    Google Scholar 

  • Mallette, L. E., Exton, J. H., and Park, C. R., 1969, Control of gluconeogenesis from amino acids in the perfused rat liver, J. Biol. Chem. 244:5713.

    Google Scholar 

  • Marliss, E. B., Aoki, T. T., Unger, R. H., Soeldner, J. S., and Cahill, G. F., Jr., 1970, Glucagon levels and metabolism effects in fasting, J. Clin. Invest. 49:2256.

    Google Scholar 

  • Mastaglia, F. L., 1974, The growth and development of skeletal muscles, in: Scientific Foundations of Paediatrics (J. A. Davis and J. Dobbing, eds.), pp.348–375, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Meister, A., 1974, An enzymatic basis for the blood brain barrier? The γ-glutamyl cycle—background and considerations relating to amino acid transport in brain, in: Brain Dysfunction in Metabolic Disorders, Vol. 53 (F. Plum, ed.), pp. 273–291, Raven Press, New York.

    Google Scholar 

  • Melichar, V., and Wolf, H., 1967, Postnatal changes in the blood serum content of glycerol and free fatty acids in premature infants. Influence of hypothermia and respiratory distress, Biol. Neonat. 11:50.

    Google Scholar 

  • Mersmann, H. J., Phinney, G., Mueller, R. L., and Stanton, H. C., 1972, Glycogen metabolism in pre-and postnatal pigs, Am. J. Physiol. 222:1620.

    Google Scholar 

  • Metzger, B. E., Agnoli, F. S., and Freinkel, N., 1971, Effect of sex and pregnancy on formation of urea and ammonia during gluconeogenesis in the perfused rat liver, Horm. Metab. Res. 2:367.

    Google Scholar 

  • Milner, R. D. G., 1970, The development of insulin secretion in man, in: Nutricia Symposium — Metabolic Processes in the Foetus and Newborn Infant (J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 192–207, Williams and Wilkins, Baltimore; H. E. Stenfert Kroese N.V.-Leiden.

    Google Scholar 

  • Milner, R. D. G., and Hales, C. N., 1965, Effect of intravenous glucose on concentration of insulin in maternal and umbilical-cord plasma, Br. Med. J. 1:284.

    Google Scholar 

  • Mimer, R. D. G., Barson, A. J., and Ashworth, M. A., 1971, Human foetal pancreatic insulin secretion in response to ionic and other stimuli, J. Endocrinol. 51:323.

    Google Scholar 

  • Milner, R. D. G., Ashworth, M. A., and Barson, A. J., 1972, Insulin release from human foetal pancreas in response to glucose, leucine, and arginine, J. Endocrinol. 52:497.

    Google Scholar 

  • Mitchell, F. L., 1967, Steroid metabolism in the fetoplacental unit and in early childhood, Vitam. Horm. 25:191.

    Google Scholar 

  • Morris, M. D., and Chaikoff, I. L., 1961, Concerning incorporation of labeled cholesterol, fed to mothers, into brain cholesterol of 20-day-old suckling rats, J. Neurochem. 8:226.

    Google Scholar 

  • Morriss, F. H., Boyd, R. D. H., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1973, Glucose/ oxygen quotients across the hindlimbs of fetal lambs, Pediatr. Res. 7:794.

    Google Scholar 

  • Morriss, F. H., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1975, The glucose/oxygen quotient of the term human fetus, Biol. Neonate 25:44.

    Google Scholar 

  • Novak, M., and Monkus, E., 1972, Metabolism of subcutaneous adipose tissue in the immediate postnatal period of human newborns. I. Developmental changes in lipolysis and glycogen content, Pediatr. Res. 6:73.

    Google Scholar 

  • Novak, M., Melichar, V., and Hahn, P., 1966, Lipid metabolism in adipose tissue from human infants, Biol. Neonate 9:105.

    Google Scholar 

  • Novak, M., Melichar, V., and Hahn, P., 1968, Changes in the reactivity in vitro to epinephrine and norepinephrine during postnatal development, Biol. Neonate 13:175.

    Google Scholar 

  • Novak, M., Hahn, P., and Melichar, V., 1969, Postnatal development of human adipose tissue, oxygen consumption, and oxidation of fatty acids, Biol. Neonate 14:203.

    Google Scholar 

  • Novak, M., Monkus, E., and Pardo, V., 1971, Human neonatal subcutaneous adipose tissue. Function and ultrastructure, Biol. Neonate 19:306.

    Google Scholar 

  • Novak, M., Monkus, E., Wolf, H., and Stave, U., 1972, The metabolism of subcutaneous adipose tissue in the immediate postnatal period of human newborns. II. Developmental changes in metabolism of 14C-(U)-Glucose and in enzyme activities of phosphofructokinase (PFK; EC 2.7.1.11) and β-hydroxyacyl-CoA dehydrogenase (HAD; EC 1.1.1.35), Pediatr. Res. 6:211.

    Google Scholar 

  • Novak, M., Hahn, P., Perm, D., Monkus, E., and Kirby, L., 1973a, Metabolism of subcutaneous adipose tissue in the immediate postnatal period of human newborns. Developmental changes in some cytoplasmic enzymes, Biol. Neonate 23:19.

    Google Scholar 

  • Novak, M., Hahn, P., Penn, D., Monkus, E., and Skala, J., 1973b, The role of carnitine in subcutaneous white adipose tissue from newborn infants, Biol. Neonate 23:11.

    Google Scholar 

  • Novak, M., Monkus, E., and Wolf, H., 1973c, The metabolism of subcutaneous adipose tissue in the immediate postnatal period of human neonates. III. Role of fetal glycogen in lipolysis and fatty acid esterification in the first hours of life, Pediatr. Res. 7:769.

    Google Scholar 

  • Novak, M., Penn Walker, D., and Monkus, E. F., 1975, Oxidation of fatty acids by mitochondria obtained from newborn subcutaneous (white) adipose tissue, Biol. Neonate 25:95.

    Google Scholar 

  • Obenshain, S. S., Adam, P. A. J., King, K. C., Teramo, K., Raivio, K. O., Räihä, N., and Schwartz, R., 1970, Human fetal insulin response to sustained maternal hyperglycemia, N. Engl. J. Med. 283:566.

    Google Scholar 

  • Odessey, R., Khairlah, A., and Goldbert, A. L., 1974, Origin and possible significance of alanine production by skeletal muscle, J. Biol. Chem. 249:7623.

    Google Scholar 

  • O’Sullivan, J. B., and Mahan, C. M., 1964, Criteria for the oral glucose tolerance test in pregnancy, Diabetes 13:278.

    Google Scholar 

  • Owen, O. E., and Reichard, G. A., Jr., 1971, Human forearm metabolism during progressive starvation, J. Clin. Invest. 50:1536.

    Google Scholar 

  • Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., and Cahill, G. F., 1967, Brain metabolism during fasting, J. Clin. Invest. 46:1589.

    Google Scholar 

  • Owen, O. E., Felig, P., Morgan, A. P., Wahren, J., and Cahill, G. F., Jr., 1969, Liver and kidney metabolism during prolonged starvation, J. Clin. Invest. 48:574.

    Google Scholar 

  • Ozand, P. T., Stevenson, J. H., Tildon, J. T., and Cornblath, M., 1975a, The effects of hyperketonemia on glycolytic intermediates in the developing rat brain, J. Neurochem. 25:61.

    Google Scholar 

  • Ozand, P. T., Stevenson, J. H., Tildon, J. T., and Cornblath, M., 1975b, The effects of hyperketonemia on glutamate and glutamine metabolism in developing rat brain, J. Neurochem. 25:67.

    Google Scholar 

  • Page, E. W., 1969, Human fetal nutrition and growth, Am. J. Obstet. Gynecol. 104:378.

    Google Scholar 

  • Page, E. W., Glendening, M. B., Margolis, A. J., and Harper, H. A., 1957, Transfer of D-and L-histidine across the human placenta, Am. J. Obstet. Gynecol. 73:589.

    Google Scholar 

  • Page, M. A., Krebs, H. A., and Williamson, D. H., 1971, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rat, Biochem. J. 121:49.

    Google Scholar 

  • Patel, A. J., and Balazs, R., 1970, Manifestation of metabolic compartmentation during the maturation of the rat brain, J. Neurochem. 17:955.

    Google Scholar 

  • Paterson, P., Sheath, J., Taft, P., and Wood, C., 1967, Maternal and fetal ketone concentrations in plasma and urine, Lancet 1:862.

    Google Scholar 

  • Persson, B., Settergren, G., and Dahlquist, G., 1972, Cerebral arteriovenous difference of acetoacetate and D-β-hydroxybutyrate in children, Acta Paediatr. Scand. 61:273.

    Google Scholar 

  • Pitkin, R. M., Connor, W. E., and Lin, D. S., 1972, Cholesterol metabolism and placental transfer in the pregnant rhesus monkey, J. Clin. Invest. 51:2584.

    Google Scholar 

  • Portman, O. W., Behrman, R. E., and Soltys, P., 1969, Transfer of fatty acids across the primate placenta, Am. J. Physiol. 216:143.

    Google Scholar 

  • Pozefsky, T., Tancredi, R. G., Moxley, R. T., Dupre, J., and Tobin, J., 1974, Forearm tissue metabolism in postabsorptive and 60-hr fasted man: Studies with glucagon, J. Clin. Invest. 53:61a (abstract).

    Google Scholar 

  • Räihä, N. C. R., and Lindros, K. O., 1969, Development of some enzymes involved in gluconeogenesis in human liver, Ann. Med. Exp. Fenn. 47:146.

    Google Scholar 

  • Reisner, S. H., Aranda, J. V., Colle, E., Papageorgiou, A., Schiff, D., Scriver, C. R., and Stern, L., 1973, The effect of intravenous glucagon on plasma amino acids in the newborn, Pediatr. Res. 7:184.

    Google Scholar 

  • Robertson, A. F., and Sprecher, H., 1968, A review of human placental lipid metabolism and transport, Acta Paediatr. Suppl. 183:1.

    Google Scholar 

  • Robinson, B. H., 1973, The role of mitochondrial tricarboxylate anion transport in metabolism, Symp. Soc. Exp. Biol. 27:195.

    Google Scholar 

  • Robinson, B. H., 1976, Development of gluconeogenic enzymes in the newborn guinea pig, Biol. Neonate 29:48.

    Google Scholar 

  • Roux, J. F., and Myers, R. E., 1974, In vitro metabolism of palmitic acid and glucose in the developing tissue of the rhesus monkey, Am. J. Obstet. Gynecol. 118:385.

    Google Scholar 

  • Sabata, V., Stembera, Z. K. S., and Novak, M., 1968a, Levels of unesterified and esterified fatty acids in umbilical blood of hypoxic fetuses, Biol. Neonate 12:194.

    Google Scholar 

  • Sabata, V., Wolf, H., Lausmann, S., 1968b, The role of free fatty acids, glycerol, ketone-bodies and glucose in the energy metabolism of the mother and fetus during delivery, Biol. Neonate 13:7.

    Google Scholar 

  • Saudek, C. D., and Felig, P., 1976, The metabolic events of starvation, Am. J. Med. 60:117.

    Google Scholar 

  • Schreiner, R. L., Burd, L. I., Douglas Jones, M., Jr., Lemons, J. A., Sheldon, R. E., Simmons, M. A., Battaglia, F. C., and Meschia, G., 1976, Fetal metabolism in fasting sheep, Pediatr. Res. 10:325 (abstract).

    Google Scholar 

  • Schwartz, A. L., 1974a, Hormonal regulation of glucose production in human fetal liver, Ph.D. thesis, Case Western Reserve University.

    Google Scholar 

  • Schwartz, A. L., 1974b, Hormonal regulation of amino acid accumulation in human fetal liver expiants, Biochim. Biophys. Acta 362:276.

    Google Scholar 

  • Schwartz, A. L., and Rall, T. W., 1975a, Hormonal regulation of incorporation of alanine-U-14C into glucose in human fetal liver expiants—effects of dibutyryl cyclic AMP, glucagon, insulin, and triamcinolone, Diabetes 24:650.

    Google Scholar 

  • Schwartz, A. L., and Rail, T. W., 1975b, Hormonal regulation of glycogen metabolism in human fetal liver. II. Regulation of glycogen synthase activity, Diabetes 24:1113.

    Google Scholar 

  • Schwartz, A. L., Räihä, N. C. R., and Rall, T. W., 1974, Effect of dibutyrl cyclic AMP on glucose-6-phosphatase activity in human fetal liver expiants, Biochim. Biophys. Acta 343:500.

    Google Scholar 

  • Schwartz, A. L., Räihä, N. C. R., and Rall, T. W., 1975, Hormonal regulation of glycogen metabolism in human fetal liver. I. Normal development and effects of dibutyryl cyclic AMP, glucagon, and insulin in liver expiants, Diabetes 24:1101.

    Google Scholar 

  • Schwerin, P., Bessman, S. P., and Waelsh, H., 1950, The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse, J. Biol. Chem. 184:37.

    Google Scholar 

  • Settergren, G., Lindblad, B. S., and Persson, B., 1976, Cerebral blood flow and exchange of oxygen, glucose, ketone-bodies, lactate, pyruvate and amino acids in infants, Acta Paediatr. Scand. 65:343.

    Google Scholar 

  • Shamoon, H., and Felig, P., 1974, Effects of estrogen on glucose uptake by rat diaphragm, Yale J. Biol. Med. 47:227.

    Google Scholar 

  • Sheath, J., Grimwade, J., Waldron, K., Bickley, M., Taft, P., and Wood, C., 1972, Arteriovenous monesterified fatty acids and glycerol differences in the umbilical cord at term and their relationship to fetal metabolism, Am. J. Obstet. Gynecol. 113:358.

    Google Scholar 

  • Shelley, H. J., 1969, Carbohydrate metabolism in the foetus and the newly born, Proc. Nutr. Soc. 28:42.

    Google Scholar 

  • Shepard, T. H., 1967, Onset of function in the human fetal thyroid: Biochemical and radioautographic studies from organ culture, J. Clin. Endocrinol. Metab. 27:945.

    Google Scholar 

  • Sherline, P., Lynch, A., and Glinsmann, W., 1972, Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism, Endocrinology 91:680.

    Google Scholar 

  • Sherline, P., Eisen, H., and Glinsmann, W., 1974, Acute hormonal regulation of cyclic AMP content and glycogen phosphorylase in fetal liver in organ culture, Endocrinology 94:935.

    Google Scholar 

  • Sherwin, R. S., Hendler, R. G., and Felig, P., 1975, Effect of ketone infusion on amino acid and nitrogen metabolism in man, J. Clin. Invest. 55:1382.

    Google Scholar 

  • Sherwin, R. S., Fisher, M., Hendler, R., and Felig, P., 1976, Hyperglucagonemia and blood glucose regulation in normal, obese, and diabetic subjects, N. Engl. J. Med. 294:455.

    Google Scholar 

  • Siesjo, B. K., Johannson, H., Ljunggren, B., and Norberg, K., 1974, Brain dysfunction in cerebral hypoxia and ischemia, in: Brain Dysfunction in Metabolic Disorders (F. Plum, ed.), Vol. 53, pp. 75–112, Research Publications, Association for Research in Nervous and Mental Disease, Raven Press, New York.

    Google Scholar 

  • Simmons, M. A., Meschia, G., Makowski, E. L., and Battaglia, F. C., 1974, Fetal metabolic response to maternal starvation, Pediatr. Res. 8:830.

    Google Scholar 

  • Smith, A. L., Satherthwaite, H. S., and Sokoloff, L., 1969, Induction of brain D(−)-β-hydroxybutyrate dehydrogenase activity by fasting, Science 163:79.

    Google Scholar 

  • Soler, N. G., Nicholson, H. O., and Malins, J. M., 1974, Serial determinations of human placental lactogen in the last half of normal and complicated pregnancies, Am. J. Obstet. Gynecol. 120:214.

    Google Scholar 

  • Sparks, J. W., Lynch, A., Chez, R. A., and Glinsmann, W. H., 1976, Glycogen regulation In isolated perfused near term monkey liver, Pediatr. Res. 10:51.

    Google Scholar 

  • Spellacy, W. N., and Goetz, F. C., 1963, Plasma insulin in normal late pregnancy, N. Engl. J. Med. 268:988.

    Google Scholar 

  • Srere, P. A., Chaikoff, I. L., Treitman, S. S., and Burstein, L. S., 1950, The extrahepatic synthesis of cholesterol, J. Biol. Chem. 182:629.

    Google Scholar 

  • Stegink, L. D., Pitkin, R. M., Reynolds, W. A., Filer, L. J., Jr., Boaz, D. P., and Brummel, M. C., 1975, Placental transfer of glutamate and its metabolites in the primate, Am. J. Obstet. Gynecol. 122:70.

    Google Scholar 

  • Stembera, Z. K., and Hodr, J., 1966, I. The relationship between blood levels of glucose, lactic acid, and pyruvic acid in the mother, and in both umbilical vessels of the healthy fetus, Biol. Neonate 10:227.

    Google Scholar 

  • Sturman, J. A., Nieman, W. H., and Gaull, G. E., 1973, Metabolism of 35S-methionine and 35S-cystine in the pregnant rhesus monkey, Biol. Neonate 22:16.

    Google Scholar 

  • Sutherland, H. W., Fisher, P. M., and Stowers, J. M., 1975, Evaluation of maternal, carbohydrate metabolism by the intravenous glucose tolerance test, in: Early Diabetes in Early Life (R. A. Camerini-Davalos and H. S. Cole, eds.), Academic Press, New York.

    Google Scholar 

  • Szabo, A. J., and Szabo, O., 1974, Placental free-fatty-acid transfer and fetal adipose-tissue development: An explanation of fetal adiposity in infants of diabetic mothers, Lancet 2:498.

    Google Scholar 

  • Szabo, A. J., Grimaldi, R. D., and Jung, W. F., 1969, Palmitate transport across perfused human placenta, Metabolism 18:406.

    Google Scholar 

  • Tandler, B., and Hoppel, C. L., 1972, Mitochondria, Academic Press, New York, p. 16.

    Google Scholar 

  • Tomec, R. J., and Hoppel, C. L., 1975, Carnitine palmitoyl transferase in bovine fetal heart mitochondria, Arch. Biochem. Biophys. 170:716.

    Google Scholar 

  • Tsoulos, N. G., Schneider, J. M., Colwill, J. R., Meschia, G., Makowski, E. L., and Battaglia, F. C., 1972, Cerebral glucose utilization during aerobic metabolism in fetal sheep, Pediatr. Res. 6:182.

    Google Scholar 

  • Tunell, R., Copher, D., and Persson, B., 1976, The pulmonary gas exchange and blood gas changes in connection with birth, in: Neonatal Intensive Care (P. R. Swyer and J. B. Stetson, eds.), pp. 89–109, Warren H. Green, St. Louis, Missouri.

    Google Scholar 

  • Tyson, J. E., and Merimee, T. J., 1970, Some physiologic effects of protein ingestion in pregnancy, Am. J. Obstet. Gynecol. 107:797.

    Google Scholar 

  • Tyson, J. E., Rabinowitz, D., Merimee, T. J., and Friesen, H., 1969, Response of plasma insulin in human growth hormone to arginine in pregnant and postpartum females, Am. J. Obstet. Gynecol. 103:313.

    Google Scholar 

  • Unger, R. H., 1974, Alpha and beta cell interrelationships in health and disease, Metabolism 23:581.

    Google Scholar 

  • Van Aasche, F. A., and Aerts, L., 1975, Morphologic and ultrastructure modifications in the endocrine pancreas in pregnant rats, in: Early Diabetes in Early Life (R. A. Camerini-Davalos and H. S. Cole, eds.), Academic Press, New York.

    Google Scholar 

  • Van den Berg, C. J., 1970, Compartmentation of glutamate metabolism in the developing brain: Experiments with labeled glucose, acetate, phenylalanine, tyrosine, and proline, J. Neurochem. 17:973.

    Google Scholar 

  • Victor, A., 1974, Normal blood sugar variation during pregnancy, Acta Obstet. Gynecol. Scand. 53:37.

    Google Scholar 

  • Villee, C.A., 1954, The intermediary metabolism of human fetal tissues, Cold Spring Harbor Symp. Quant. Biol. 19:186.

    Google Scholar 

  • Villee, C. A., Hagerman, D. D., Holmberg, N., Lind, J., and Villee, D. B., 1958, The effects of anoxia on the metabolism of human fetal tissues, Pediatrics 22:953.

    Google Scholar 

  • Volpe, J. J., and Kishimoto, Y., 1972, Fatty acid synthetase of brain: Development, influence of nutritional and hormonal factors, and comparison with liver enzyme, J. Neurochem. 19:737.

    Google Scholar 

  • Wahren, J., Felig, P., and Hagenfeldt, J., 1976, Effect of protein ingestion on splanchnic and leg metabolism in normal man and diabetes mellitus, J. Clin. Invest. 57:987.

    Google Scholar 

  • Wapnir, R. A., Tildon, J. T., and Cornblath, M., 1973, Metabolic differences in offspring of rats fed high fat and control diets, Am. J. Physiol. 224:596.

    Google Scholar 

  • Widdas, W. F., 1952, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 118:23.

    Google Scholar 

  • Widdowson, E. M., 1968, Growth and composition of the fetus and newborn, in: Biology of Gestation (N. S. Assali, ed.), Vol. 2, p. 1. Academic Press, New York.

    Google Scholar 

  • Widdowson, E. M., 1974, Changes in body proportions and composition during growth, in: Scientific Foundations of Paediatrics (J. A. Davis and J. Dobbing, eds.), pp. 440–455, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Williamson, D. H., Bates, M. W., Page, M. A., and Krebs, H. A., 1971, Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues, Biochem. J. 121:41.

    Google Scholar 

  • Wittels, B., and Bressler, R., 1965, Lipid metabolism in the newborn heart, J. Clin. Invest. 44:1965.

    Google Scholar 

  • Yeung, D., and Oliver, I. T., 1967, Development of gluconeogenesis in neonatal rat liver. Effect of premature delivery, Biochem. J. 105:1229.

    Google Scholar 

  • Yoshioka, T., and Roux, J. F., 1972, In vitro metabolism of palmitic acid in human fetal tissue, Pediatr. Res. 6:675.

    Google Scholar 

  • Zieve, F. J., and Glinsmann, W. H., 1973, Activation of glycogen synthetase and inactivation of phosphorylase kinase by the same phosphoprotein phosphatase, Biochem. Biophys. Res. Commun. 50:872.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Adam, P.A.J., Felig, P. (1978). Carbohydrate, Fat, and Amino Acid Metabolism in the Pregnant Woman and Fetus. In: Falkner, F., Tanner, J.M. (eds) Principles and Prenatal Growth. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0814-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0814-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0816-4

  • Online ISBN: 978-1-4684-0814-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics