Skip to main content

The Search for Genetic Polymorphisms of Human Biogenic-Amine Related Enzymes

  • Chapter
The Impact of Biology on Modern Psychiatry

Abstract

Genetic studies have provided some of the most convincing evidence of biological contributions to the etiology of severe mental illness (1). Both manic-depressive illness and schizophrenia appear to have large genetic components in their etiology, though nongenetic factors are clearly important too (2,3). As the role of genetic factors becomes increasingly clear and scientifically well-founded, the next challenge becomes the elucidation of the mechanism of genetic transmission. Some aspect of physiology or biochemistry must be altered in an individual who carries the genetic predisposition to a mental illness. This genetically-based alteration, if identified, could conceivably someday serve as a “genetic marker” for mental illness, and allow medicine to concentrate its preventive efforts on those individuals who are genetically at risk. An analogy can be found in the disease favism, caused by a defect in the enzyme glucose-6-phosphate dehydrogenase (G6PD) (4). The enzyme is often assayed in screening programs of populations at risk, and affected individuals are advised on proper dietary avoidances. Favism provides an analogy for another important point relating to schizophrenia and manic-depressive illness, in that not all individuals with the abnormal gene for favism develop symptoms of the illness (5). The gene for favism is inherited as a simple X-linked recessive, but ingestion of special foods or other environmental circumstances are necessary to provoke the symptoms of hemolytic anemia in an individual carrying the gene. It is clear that not all individuals genetically at risk for schizophrenia or manic-depressive illness develop these illnesses (1,2). A third to two-thirds of monozygotic cotwins of schizophrenics are not schizophrenic (2,6), though they are of course genetically identical in every way to their siblings. The search for genetic markers of schizophrenia and manic-depressive illness does not contradict the importance of environmental factors in enhancing or inhibiting the expression of abnormal genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenthal, D.: Genetic Theory and Abnormal Behavior, McGraw-Hill Book Co., New York, 1970.

    Google Scholar 

  2. Pollin, W.: The pathogenesis of schizophrenia, Arch. Gen. Psychiat, 27: 29, 1972.

    CAS  Google Scholar 

  3. Gershon, E.S., Dunner, D.L. and Goodwin, F.K.: Toward a biology of affective disorders: genetic contributions. Arch. Gen. Psychiat., 25: 1–15, 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Harris, H.: The Principles of Human Biochemical Genetics. North-Holland Publishing Co., Amsterdam, 1975, Second Ed.

    Google Scholar 

  5. Wintrobe, M.M., Thorn, G.W., Adams, R.D., Bennet, I.L. jr., Braunwald, E., Isselbacher, K.J., Petersdorf, R.G. (eds), Harrison’s Principles of Internal Medicine, Vol. II, Sixth Ed. 1970, McGraw-Hill p. 1621

    Google Scholar 

  6. Belmaker, R., Pollin, W., Wyatt, R.J., Cohen, S.: A follow-up of monozygotic twins disordant for schizophrenia, Arch. Gen. Psychiat., 30: 219, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Watson, J.D.: The Molecular Biology of the Gene, W.A. Benjamin, New York, 1965.

    Google Scholar 

  8. Okada, S. and O’brian, J.S.,: Tay-Sachs disease: Generalized absence of a B-D-N-acetylhexosaminidase component. Science, 165: 698, 1969.

    Article  PubMed  CAS  Google Scholar 

  9. Uhlendorf, W.B. and Mudd, H.S.: Cystathionine Synthase in tissue culture derived from human skin: enzyme defect in homocysti-nuria. Science, 160: 1007–1009, 1968.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida, A.: Hemolytic anemia and G6PD deficiency. Science, 179–532, 1973.

    Google Scholar 

  11. Szeinberg, A.: Investigation of genetic polymorphic traits in Jews. Israel J. Med. Sci., 9:1171, 1973, (Supplement).

    Google Scholar 

  12. Zouros, E.: Electrophoretic variation in allelozymes related to function or structure? Nature, 254: 446, 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson, G.B.: Enzyme polymorphism and metabolism, Science, 184: 28, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Omenn, G.S. and Motulsky, A.G.: Biochemical genetics and the evolution of human behavior, Genetics, Environment and Behavior, Ehrman, L., Omenn, G.S. and Caspari, E. (eds), Academic Press, N.Y. 1972.

    Google Scholar 

  15. Spector, S., Gordon, R., Sjoerdsma, A. and Udenfriend, S.: End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Molec. Pharmac., 3: 549, 1967.

    CAS  Google Scholar 

  16. Schildkraut, J.J.: The catecholamine hypothesis of affective disorders: A review of supporting evidence. Amer. J. Psychiat., 122: 509, 1965.

    PubMed  CAS  Google Scholar 

  17. Axelrod, J.: Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacol. Rev., 18: 95, 1966.

    PubMed  CAS  Google Scholar 

  18. Axelrod, J. and Coot, C.K.: Methyltransferaseenzymes in red blood cells. J. Pharmacol. Exp. Ther., 176: 650, 1971.

    PubMed  CAS  Google Scholar 

  19. Briggs, M.H. and Briggs, M.: Hormonal influences on erythrocyte catechol-O-methyltransferase activity in humans. Experientia, 29: 278,;973.

    Google Scholar 

  20. Weiss, J.L., Coot, C.K. and Chase, T.N.: Reduction of catechol-O-methyltransf erase activity by chronic L-dopa therapy. Nature, 234: 218, 1971.

    Article  PubMed  CAS  Google Scholar 

  21. Gustavson, K.H., Wetterberg, L., Backstrom, M. and Ross, S.B.: Catechol-O-methyltransferase activity in erythrocytes in Down’s syndrome. Clin. Gen., 4: 279, 1973.

    Article  CAS  Google Scholar 

  22. Weinshilboum, R.M., Raymond, F.S., Eleveback, L.R. and Weidman, W. H.: Red blood cell catechol-O-methyltransferase activity: sibling-sibling correlation. Nature, 252-490, 1974.

    Google Scholar 

  23. Grunhaus, L., Ebstein, R., Belmaker, R.H., Sandler, S.G. and Jonas, W.: A twin study of human red blood cell catechol-O-methyltransferase. Brit. J. Psychiat., 128, 494–98, 1976

    CAS  Google Scholar 

  24. Cohn, CK., Dunner, D.L. and Axelrod, J.: Reduced catechol-O-methyltransferase activity in red blood cells of women with primary affective disorders. Science, 170: 1323, 1970.

    Article  PubMed  CAS  Google Scholar 

  25. Dunner, D.L., Cohn, C.K., Gershon, E.S. and Goodwin, F.K.: Differential catechol-O-methyltransferase activity in unipolar and bipolar affective illness. Arch. Gen. Psychiat., 25: 348, 1971.

    Article  PubMed  CAS  Google Scholar 

  26. Weinshilboum, R.M., Raymond, F.A., Eleveback, L.R. and Weidman, W.H.: Red blood cell catechol-O-methyltransferase activity: sibling-sibling correlation, Pharmacologist, 16: 236, 1974.

    Google Scholar 

  27. Gershon, E.S. and Jonas, W.Z.: Erythrocyte soluble catechol-O-methytransferase activity in primary affective disorder. Arch. Gen. Psychiat., 32: 1351, 1975.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy, D.L.: Technical strategies for the study of catecholamines in man, Frontiers in Catecholamine Research, Usdin, E. and Snyder, S. H. (eds), Pergamon Press, p. 1077, 1973.

    Google Scholar 

  29. Mattysse, S and Baldessarini, R.J.: S-adenosylmethionine and catechol-O-methyltransferase in schizophrenia. Amer. J. Psychiat., 128: 10,1972.

    Google Scholar 

  30. Poitou, P., Assicot, M. and Bohuon, C: Soluble and membrane catechol-O-methyltransferase in red blood cells of schizophrenic patients. Biomedicine, 21: 91–93, 1974.

    PubMed  CAS  Google Scholar 

  31. Shopsin, B., Wilk, S., Gershon, S., Roffman, M. and Goldstein, M.: Collaborative psychopharmacologic studies exploring catecholamine metabolism in psychiatric disorders, Frontiers in Catecholamine Research, Usdin, E. and Snyder, S.H. (eds), Pergamon Press, p. 1173, 1973.

    Google Scholar 

  32. Ornstein, L.: Disc electrophoresis, Part I. Ann. NY Acad. Sci., 121: 321, 1964.

    Article  PubMed  CAS  Google Scholar 

  33. Davis, B.: Disc electrophoresis-II: Method and application to human serum proteins. Ann. NY Acad. Sci., 121: 404, 1964.

    Article  PubMed  CAS  Google Scholar 

  34. Ebstein, R., Belmaker, R.H., Benbenisty, D. and Rimon, R..: Electrophoretic pattern of red blood cell catechol-O-methyltransferase in schizophrenia and manic-depressive illness. J. Biol. Psychiat., in press.

    Google Scholar 

  35. White, H.L. and WU, J.C.: Properties of catechol-O-methy-transferase from brain and liver of rat and human. Biochem. J., 145: 135, 1975.

    PubMed  CAS  Google Scholar 

  36. Youdim, M.B.H. and Lagnado, J.R.: Limitation in the use of tetrazolium salts for the detection of multiple forms of monoamine oxidase. Costa, E. and Greengard, P. (eds), Advances in Biochemical Psychopharmacology, 5:289, New York, Raven Press 1972.

    Google Scholar 

  37. Kopin, I.J.: Storage and metabolism of catecholamines: The role of monoamine oxidase. Pharmac. Rev.,16:179, 1964.

    Google Scholar 

  38. Weiner, N. and Bjur, R.: The role of intraneuronal monoamine oxidase in the regulation of norepinephrine synstesis. Monoamine OxidasesNew Vistas, Costa, E. and Sandler, M. (eds),Raven Press, New York, p. 409, 1972.

    Google Scholar 

  39. Murphy, D.L., Belmaker, R.H. and Wyatt, R.J.: Monoamine oxidase in schizophrenia and other behavioral disorders. J. Psychiat. Res., 11: 221–247, 1974.

    Article  PubMed  CAS  Google Scholar 

  40. Nies, A., Robinson, D.S., Lamborn, K.R. and Lampert, R.P.: Genetic control of platelet and plasma monoamine oxidase activity. Arch. Gen. Psychiat., 28: 834, 1973.

    Article  PubMed  CAS  Google Scholar 

  41. Murphy, D.L. and Wyatt, R.J.: Reduced MAO activity in blood platelets from schizophrenic patients. Nature, 238: 225, 1972.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy, D.L. and Weiss, R.L.:Reduced monoamine oxidase activity in blood platelets from bipolar depressed patients. Am. J. Psychiat., 128: 11, 1972.

    Google Scholar 

  43. Wyatt, R.J., Murphy, D.L., Belmaker, R.H., Cohen, S., Donnelly, C.H. and Pollin, W.: Reduced monoamine oxidase in platelets: A possible genetic marker for vulnerability to schizophrenia. Science, 179: 916, 1973.

    CAS  Google Scholar 

  44. Wyatt, R.J., Belmaker, R.H., and Murphy, D.L.: Low platelet monoamine oxidase and vulnerability to schizophrenia. Modern Problems in Pharmacopsychiatry, Mendlewicz, J., (ed), Karger, Vol. 10, Basel 1975.

    Google Scholar 

  45. Meltzer, H.Y. and Stahl, S.M.: Platelet monoamine oxidase activity and substrate preferences in schizophrenic patients. Res. Comm. in Chem. Path, and Pharmacol., 7: 419, 1974.

    CAS  Google Scholar 

  46. Carpenter, W.T. jr., Murphy, D.L. and Wyatt, R.J.: Platelet monoamine oxidase activity in acute schizophrenia. Am. J. Psychiat., 132: 438, 1975.

    PubMed  Google Scholar 

  47. Friedman, E., Shopsin, B., Sathananthan, G. and Gershon, S.: Blood platelet monoamine oxidase activity in psychiatric patients. Am. J. Psychiat., 131: 1392, 1974.

    PubMed  CAS  Google Scholar 

  48. Belmaker, R.H., Elbesen, K., Ebstein, R. and Rimon, R.: Platelet monoamine oxidase in schizophrenia and manic-depressive illness. Brit. J. Psychiat., in press.

    Google Scholar 

  49. Collins, G.G.S. and Sandler, M.: Human blood platelet monoamine oxidase. Biochem. Pharmac, 20: 289, 1971.

    Article  CAS  Google Scholar 

  50. Eelmaker, R., Ebstein, R., Rimon, R.: Electrophoresis of platelet monoamine oxidase in schizophrenia and manic-depressive illness, Acta Psychiat. Scand. in press.

    Google Scholar 

  51. Edwards, D.J. and Chang, S.S.: Evidence for interacting catalytic sites of human platelet monoamine oxidase. Biochem. Biophys. Res. Comm., 65: 1018, 1975.

    Article  PubMed  CAS  Google Scholar 

  52. Youdim, M.B.H.: Multiple forms of mitochondrial monoamine oxidase. Brit. Med. Bull. 29: 120, 1973.

    PubMed  CAS  Google Scholar 

  53. Tipton, K.P., Houslay, M.D. and Garrett, N.J.: Allotopic properties of human “brain monoamine oxidase. Nature New Biology, 246: 213, 1973.

    Article  PubMed  CAS  Google Scholar 

  54. Neff, N.H. and Goridis, C: Neuronal monoamine oxidase: Specific enzyme types and their rates of formation. Advances in Biochemical Psychopharmacology. Costa, E. and Greengard, P. (eds), 5: 307, N.Y. 1972.

    PubMed  CAS  Google Scholar 

  55. Murphy, D.L. and Donnelly, C.H.: Monoamine oxidase in man: enzyme characteristics in platelets, plasma and other human tissues. Advances in Biochemical Psychopharmacology, E. Usdin, ed. Raven Press, N.Y., Vol. 5, 1974.

    Google Scholar 

  56. Domino, E.F., Krause, R.R. and Bowers, J.: Various enzymes involved with putative transmitters. Arch. Gen. Psychiat., 29: 195, 1973.

    Article  PubMed  CAS  Google Scholar 

  57. Wise, CD., Baden, M.M. and Stein, L.: Post-mortem measurement of enzymes in human brain: Evidence of a central noradrenic deficit in schizophrenia. J. Psychiat. Res., 11: 185, 1974.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz, M., Aikens, A.M. and Wyatt, R.J.: Monoamine oxidase in brains from schizophrenic and mentally normal individuals. Psychopharmacologia, 38: 319, 1974.

    Article  PubMed  CAS  Google Scholar 

  59. Ehrensvard, G., Liijevist, J. and Nilsson, M.T.: Studies of human serum constituents in relation to schizophrenia. Molecular Basis of Some Aspects of Mental Activity. Walaas, O. (ed), Academic Press, New York, 2: 231, 1967.

    Google Scholar 

  60. Klaiber, E.L., Brovermm, D.M., Vogel, W., Kobayashi, Y. and Moriatry, D.: Effects of estrogen therapy on plasma MAO activity and EEG driving responses of depressed woman. Am. J. Psychiat., 128: 1492, 1972.

    PubMed  CAS  Google Scholar 

  61. Robinson, D.S., Davis, M.M., Nies, A., Ravaris, C.L. and Sylvester, D.: Relation of sex and aging to monoamine oxidase activity of human “brain plasma and platelets. Arch. Gen. Psychiat., 24: 536, 1971.

    Article  PubMed  CAS  Google Scholar 

  62. Belmaker, R.H., Ebsteih, R. and Benbenisty, D.: Electrophoretic pattern of plasma MAO in schizophrenia and affective illness. J. Psychiat. Res., in press.

    Google Scholar 

  63. Shih, J.H.C. and Eiduson, S.: Multiple forms of monoamine oxidase in developing tissue: The implications for mental health. Ho, B. and Mclsaac, W. (eds), Brain Chemistry and Mental Diseases, Plenum Publishers, pp. 3–20, 1971.

    Google Scholar 

  64. Gershoi, E., Belmaker, R. and Ebstein, R.: Plasma monoamine oxidase in patients with affective disorder and their families. Submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Belmaker, R.H., Ebstein, R.P. (1977). The Search for Genetic Polymorphisms of Human Biogenic-Amine Related Enzymes. In: Gershon, E.S., Belmaker, R.H., Kety, S.S., Rosenbaum, M. (eds) The Impact of Biology on Modern Psychiatry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0778-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0778-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0780-8

  • Online ISBN: 978-1-4684-0778-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics