Skip to main content

Mantle Phase Transitions, Layered Chaotic Convection, and the Viscosity of the Deep Mantle

  • Conference paper
Chaotic Processes in the Geological Sciences

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 41))

Abstract

Recent high pressure measurements of the phase diagram of mantle material (Ito and Takahashi, 1989) have demonstrated rather clearly that the phase-loop for the divariant Spinel-post Spinel transition is extremely narrow in pressure and that the Clapeyron slope of this transition is near -2.8 M Pa/°K. Extremely high resolution calculations of the nature of convective mixing in a flow in which both this and the Olivine-Spinel transition are present, demonstrate that the endothermic transition suffices to episodically enforce a high degree of layering upon the circulation, since mass flux through the phase boundary is on occasion strongly inhibited. The presence of the internal thermal boundary layer that develops across the phase boundary when such layering is present has important implications for the expected radial variation of mantle viscosity. We invoke recent inferences of the radial variation of mantle viscosity, based upon mantle tomography and non-hydrostatic geoid anomalies, to suggest that the observed variation of this transport property is in accord with expectations based upon the layered convection scenario. Inferences of mantle viscosity based upon glacial rebound data are also in accord with this view, since these data also require that the increase of viscosity across the 670 km discontinuity is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaogi, M. and E. Ito, Oli vine-mod Wed spinel-spinel transitions in the system M g2 SiO 4 -Fe 2 SCO 4 : Calorimetric measurements, Thermochemical Calculation, and Geophysical Application, J. Geophys. Res., 94, no. B11 (1989), pp. 15671–15685.

    Article  ADS  Google Scholar 

  • Allegre, C.J., Chemical geodynamics, Tectonophysics, 81 (1982), pp. 109–132.

    Article  ADS  Google Scholar 

  • Anderson, O.L., A. Chopelas, and R. Boehler, Thermal expansion vs. pressure at constant temperature: a re-examination, in Geophys. Res. Lett., 17 (1990), pp. 685–688.

    Article  ADS  Google Scholar 

  • Busse, F.H. and G. Schubert, Convection in a fluid with two phases, J. Fluid Mech., 46 (1971), pp. 801–812.

    Article  ADS  MATH  Google Scholar 

  • Chopelas, A., and R. Boehler, Thermal expansion measurements at very high pressure, systematics, and a case for a chemically homogeneous mantle, Geophys. Res. Lett., 16 (1989), pp. 1347–1350.

    Article  ADS  Google Scholar 

  • Christensen, U., Phase boundaries in Unite amplitude mantle convection, Geophys. J.R. Astron. Soc., 68 (1982), pp. 487–497.

    Article  Google Scholar 

  • Christensen, U.R., and D.A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, no. B12 (1984), pp. 10291–10300.

    Article  ADS  Google Scholar 

  • Dziewonski, A.M., Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89 (1984), pp. 5929–5952.

    Article  ADS  Google Scholar 

  • Forte, A.M. and W. R. Peltier, Plate tectonics and aspherical earth structure: the importance of poloidal-toroidal coupling, J. Geophys. Res., 92 (1987), pp. 3645–3679.

    Article  ADS  Google Scholar 

  • Forte, A.M. and W. R. Peltier, Core mantle boundary topography and whole-mantle convection, Geophys. Res. Lett., 16 (1989), pp. 621–624.

    Article  ADS  Google Scholar 

  • Forte, A.M. and W. R. Peltier, Mantle convection and core-mantle boundary topography: explanations and implications, Tectonophysics, 187 (1991a), pp. 91–116.

    Article  ADS  Google Scholar 

  • Forte, A.M. and W.R. Peltier, Viscous flow models of global geophysical observables. L Forward Problems, J. Geophys. Res., in press 1991b.

    Google Scholar 

  • Hager, B. H., Subducted slabs and the geoid: constraints on mantle rheology and flow, J. Geophys. Res., 89 (1984), pp. 6003–6015.

    Article  ADS  Google Scholar 

  • Hager, B.H., Mantle viscosity: a comparison of models from postglacial rebound and from the geoid, plate driving forces, and advoctive heat flux, in Glacial Isostasy, Sea Level and Mantle Rheology, R. Sabadini ed., Kluwer Academic Publishers, Dordrecht (1991), pp. 493–513.

    Google Scholar 

  • Eager, B.H. and R.W. Clayton, Constraints on the structure of mantle convection using seismic observations, Bow models, and the geoid, in Mantle Convection, edited by W.R. Peltier, Gordan and Breach Science Publishers, New York, (1989), pp. 657–763.

    Google Scholar 

  • Hager, B.H., R.W. Clayton, M.H. Richards, R.P. Comjsr, and A.M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313 (1985), pp. 541–545.

    Article  ADS  Google Scholar 

  • Hager, B.H. and M.A. Richards, Long wavelength variationsin Earth’s geoid: physical models and dynamical implications, Phil. Trans. R. Soc. Lond., A328 (1989), pp. 309–327.

    Article  ADS  Google Scholar 

  • Hart, S. and A. Zindler, Constraints on the nature and development of chemical heterogeneities in the mantle, in Mantle Convection (W.R. Peltier ed.), Gordan and Breach Science PubHshers, New York (1989), pp. 261–388.

    Google Scholar 

  • Haskell, N.A., The motion of a viscous ffuid under a surface load. 1, Physics (N.Y.), 6 (1935), pp. 265–269.

    ADS  MATH  Google Scholar 

  • Haskell, N.A., The motion of a viscous fluid under a surface load. 2, Physics (N.Y.), 7 (1936), pp. 56–61.

    ADS  MATH  Google Scholar 

  • Iisaaks, B., and Molnar, P., Distribution of stresses in the descending lithosphere from a global survey of focal mechanism solutions of mantle earthquakes. Rev. Geophys. Space Phys., 9, 1 pp. 103–174.

    Google Scholar 

  • Ito, E. and E. Takahashi, Postspinel transformations in the system Mg 2 SiO 4 - Fe 2 SiO 4 and some geophysical implications, J. Geophys. Res., 94, no. B8 (1989), pp. 10637–10646.

    Article  ADS  Google Scholar 

  • Jarvis, G.T. and W.R. Peltier, Mantle convection as a boundary layer phenomenon, Geophys. J.R. Astron. Soc., 68 (1982), pp. 389–427.

    Article  ADS  MATH  Google Scholar 

  • Jeanloz, R. and S. Morris, Temperature distribution in the crust and mantle, Ann. Rev. Earth Planet. Sci., 14 (1986), pp. 377–415.

    Article  ADS  Google Scholar 

  • Jeanloz, R. and A. B. Thompson, Phase transitions and mantle discontinuities. Rev. Geophys. Space Phys., 21 (1983), pp. 51–74.

    Article  ADS  Google Scholar 

  • Katsura, T. and E. Ito, The system Mg 2 SiO 4Fe 2 SiO 4 at high pressures and temperatures: precise determination of stabilities of Olivine, modified Spinel, Spinel, J. Geophys. Res., 94, | no. B11 (1989), pp. 15663–15670.

    Article  ADS  Google Scholar 

  • Lerch, F.S., S.M. Klosko, R.E. Laubscher and C.A. Wagner, Gravity model improvement using GEOS 3 (GEM9 and GEMIO), J. Geophys. Res., 84 (1979), pp. 3897–3916.

    Article  ADS  Google Scholar 

  • Machetal, P., and Weber, Patrice, Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350 (1991), pp. 55–57.

    Article  ADS  Google Scholar 

  • Minster, J. B. and T. H. Jordan, Present-day plate motions, J. Geophys, Res., 83 (1978), pp. 5331–5354.

    Article  ADS  Google Scholar 

  • Mitrovica, J. X. and W. R. Peltier, Pleistocene déglaciation and the global gravity field, J. Geophys. Res., 94 (1989), pp. 13651–13671.

    Article  ADS  Google Scholar 

  • Morelli, A., and A. M. Dziewonski, Topography of the core-mantle boundary and lateral homogeneity of the liquid core. Nature, 325 (1987), pp. 678–683.

    Article  ADS  Google Scholar 

  • Olson, P., P.G. Silver, and R.W. Carlson, Nature, 344 (1990), pp. 209–215.

    Article  ADS  Google Scholar 

  • O’Nions, R. K., N. M. Evenson, and P.J. Hamilton, Geochemical modelling of mantle differentiation and crustal growth, J. Geophys. Res., 84 (1979), pp. 6091–6101.

    Article  ADS  Google Scholar 

  • Peltier, W. R., Mantle convection and viscosity. In: A. Dziewonski and E. Boschi (Editors), Physics of the Earth’s Interior, North Holland, Amsterdam (1980), pp. 362–431.

    Google Scholar 

  • Peltier, W. R., Ice age geodynamics, Annu. Rev. Earth Planet. Sci., 9 (1981), pp. 199–225.

    Article  ADS  Google Scholar 

  • Peltier, W. R., Mantle convection and viscoelasticity, Ann. Rev. Fluid Mech., 17 (1985), pp. 561–608.

    Article  ADS  Google Scholar 

  • Peltier, W. R., Mantle viscosity, in W. R. Peltier (ed.). Mantle Convection: Plate Tectonics and Global Dynamics, Gordan and Breach Sci. Publ., New York (1989), pp. 389–478.

    Google Scholar 

  • Peltier, W.R., A.M. Forte, J.X. Mitrovica, and A.M. Dziewonski, Earth’s gravitational field: seismic tomography resolves the enigma of the Laurentian anomaly. Nature, in press, 1991.

    Google Scholar 

  • Peltier, W.R., and G.T. Jarvis, Whole mantle convection and the thermal evolution of the earth, Phys. Earth Planet. Int., 29 (1982), pp. 281–304.

    Article  ADS  Google Scholar 

  • Peltier, W. R., G.T. Jarvis, A.M. Forte and L.P. Solheim, Radial structure of the mantle general circulation, in W.R. Peltier ed. (op. cit.) (1989), pp. 765–815.

    Google Scholar 

  • Reynard, Bruno and Geoffrey D. Price, Thermal expansion of mantle minerals at high pressures — a theoretical study, Geophys. Res. Lett., 17 (1990), pp. 689–692.

    Article  ADS  Google Scholar 

  • Richards, M. A. and B. H. Hager, Geoid anomalies in a dynamic earth, J. Geophys. Res., 89 (1984), pp. 5987–6002.

    Article  ADS  Google Scholar 

  • Richter, F. M., and C. Johnson, Stability of a chemically layered mantle, J. Geophys. Res., 79 (1974), pp. 1635–1639.

    Article  ADS  Google Scholar 

  • Safronov, V.S., Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, Moscow: Nauka. In Russian (1969). English transi: NASA TT-F-677, 1972.

    Google Scholar 

  • Schubert, G. and D. L. Turcotte, Phase changes and mantle convection, J. Geophys. Res., 76 (1971), pp. 1424–1432.

    Article  ADS  Google Scholar 

  • Schubert, G., D.A. Yuen, and D.L. Turcotte, Role of phase transitions in a dynamic mantle, Geophys. J.R. Astron. Soc., 42 (1975), pp. 705–735.

    Article  Google Scholar 

  • Solheim, L.P. and W.R. Peltier, Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection, Geophys. Astrophys. Fluid Dyn., 53 (1990), pp. 205–255.

    Article  ADS  Google Scholar 

  • Solheim, L. P. and W. R. Peltier, The influence of solid-solid phase transformations on the radial mixing length in mantle convection. Can. J. Earth Sci., in press, 1991.

    Google Scholar 

  • Su, Wei-JA, and A.M. Dziewonski, Predominance of long-wavelength heterogeneity in the mantle. Nature, 352 (1991), pp. 121–126.

    Article  ADS  Google Scholar 

  • Tushingham, A.M. and W.R. Peltier, Ice-3G: A new global model of late Pleistocene déglaciation based upon geophysical predictions of post-glacial relative sea level change, J. Geophys. Res., 96 (1991a), pp. 4499–4523.

    Article  ADS  Google Scholar 

  • Tushingham, A.M. and W.R. Peltier, Validation of the ICE-3G model of Würm-Wisconsin déglaciation using a global data base of relative sea level histories, J. Geophys. Res., in press (1991b).

    Google Scholar 

  • Walcott, R.L., Rheological models and observational data of glacio-isostatic rebound, In “Earth Rheology, Isostasy, and Eustasy” (N.-A. Mörner ed.), 3–10, Wiley (New York), 1980.

    Google Scholar 

  • Wasserburg, G.J. and D.J. DePaulo, Models of Earth structure inferred from Neodymium and Strontium isotopic abundances, Proc. Natl. Acad. Sci. U.S.A., 76, (1979), pp. 3594–3598.

    Article  ADS  Google Scholar 

  • Woodhouse, J.H. and A.M. Dziewonski, Mapping the lower mantle: Three dimensional model of earth structure by inversion of seismic waveforms, J. Geophys. Res., 89 (1984), pp. 5953–5986.

    Article  ADS  Google Scholar 

  • Yuen, D.A., W. Zhao, and M. Liu, Effects of phase transitions on mantle convection, EOS, 71, no. 43 (1990), p. 1293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Peltier, W.R., Solheim, L.P. (1992). Mantle Phase Transitions, Layered Chaotic Convection, and the Viscosity of the Deep Mantle. In: Yuen, D.A. (eds) Chaotic Processes in the Geological Sciences. The IMA Volumes in Mathematics and its Applications, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0643-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0643-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0645-0

  • Online ISBN: 978-1-4684-0643-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics