Skip to main content

Strongly Chaotic Newtonian and Non-Newtonian Mantle Convection

  • Conference paper
Chaotic Processes in the Geological Sciences

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 41))

Summary

The topic of hard turbulent thermal convection is discussed with application to the earth sciences. These new ideas, stimulated by laboratory experiments initiated by physicists, may be useful for understanding the dynamics of magma oceans developed in the early stages of terrestrial planets. Results drawn from two-dimensional numerical simulations of base-heated thermal convection for both linear and non-linear rheologies are presented to show by visualization of the temperature, viscosity and vorticity fields in the transition to the hard turbulent regime. The vorticity fields may provide a good diagnostic measure for the transition to hard turbulence. Both the vorticity and viscosity fields in the non-Newtonian hard turbulent regime reveal small-scale motions and the contours of these heterogeneities assume a fractal-like appearance. The threshold Nusselt number, around 20, for the transition to hard turbulence is lower for base-heated non-Newtonian convection than for Newtonian solutions, thus making it possible for the Earth’s upper mantle to be in a hard-turbulent state today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balachandar, S., Maxey, M.R. and L. Sirovich, Numerical simulation of high Rayleigh number convection, J. Sci. Comp., 4 (1989), 219–235.

    Article  Google Scholar 

  2. Benzi, R., Paladin, G. and A. Vulpiani, Power spectra in two-dimensional turbulence, Phys. Rev. A., 42 (1990), 3654–3656.

    Article  ADS  Google Scholar 

  3. Castaing, B., Gunaratnb, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.Z., Zaleski, S. and Zanetti, G., Scaling of hard thermal turbulence in Rayleigh-Benard convection, J. Fluid Mech., 204 (1989), 1–30.

    Article  ADS  Google Scholar 

  4. Christensen, U.R., Convection with pressure-and temperature-dependent non-Newtonian rheology, Geophys. J.R. Astr. Soc., 77 (1984), 343–384.

    Article  ADS  Google Scholar 

  5. Christensen, U.R. and D.A. Yuen, Time-dependent convection with non-Newtonian viscosity, J. Geophys. Res., 94 (1989), 814–820. I

    Article  ADS  Google Scholar 

  6. Davies, G.F., Ocean Bathymetry and mantle convection 1. Large-scale flow and hotspots, J. Geophys. Res., 93 (1988), 10408–10420.

    Article  Google Scholar 

  7. DePaolo, D.J. and G.J. Wasserburg, Neodymium isotopes in flood basalts from the | Siberian Platform and inferences about their mantle sources, Proc. Nat. Acad. Sci. U.S.A., 76 (1979), 3056–3060.

    Article  ADS  Google Scholar 

  8. Dziewonski, A.M., Mapping the lower mantle: Determination of lateral heterogeneities in I P velocity up to degree and order 6, J. Geophys. Res., 89 (1984), 5929–5952.

    Article  ADS  Google Scholar 

  9. Goetze, C. and D.L. Kohlstedt, Laboratory study of dislocation climb and diffusion in olivine, J. Geophys. Res., 78 (1973), 5961–5971.

    Article  ADS  Google Scholar 

  10. Goldreich, P. and A. Toomre, Some remarks on polar wandering, J. Geophys. Res., 74 (1968), 2555–2567.

    Article  ADS  Google Scholar 

  11. Goldstein, R.J., Chiang, H.D. and D.L. See, High-Rayleigh number convection in a horizontal enclosure, J. Fluid Mech., 213 (1990), 111–126.

    Article  ADS  Google Scholar 

  12. Gordon, R.G., Late Cretaceous apparent polar wander of the pacific plate: Evidence for a rapid shift of the Pacific hotspots with respect to the spin axis, Geophys. Res. Lett. 10 (1983), 709–712.

    Article  ADS  Google Scholar 

  13. Gudmundsson, O., Davies, J.H., and Clayton, R.W., Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data, Geophys. J. Int. 102 (1990), 25–43.

    Article  ADS  Google Scholar 

  14. Gurnis, M., Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344 (1990), 754–756.

    Article  ADS  Google Scholar 

  15. Hansen, U., Yuen, D.A. and S.E. Kroening, Transition to hard turbulence in thermal convection at infinite Prandtl number, Phys. Fluids, A2(12) (1990), 2157–2163.

    ADS  Google Scholar 

  16. Hansen, U., Yuen, D.A. and S.E. Kroening, Mass and heat transport in strongly time-dependent thermal convection at infinite Prandtl number, Geophys. Astrophys. Fluid Dyn., in press (1991).

    Google Scholar 

  17. Heslot, F., Castaing, B. and A. Libchaber, Transitions to turbulence in helium gas, Phys. Rev. A. 36 (1987), 5870–5873.

    Article  ADS  Google Scholar 

  18. Houseman, G.A., The dependence of convection planform on mode of heating. Nature, 332 (1988), 346–349.

    Article  ADS  Google Scholar 

  19. Inoue, H., Fukao, Y., Tanabe, K. and Y. Ogata, Whole mantle P-wave travel time tomography, Phys. Earth Planet, Int., 59 (1990), 294–328.

    Article  ADS  Google Scholar 

  20. Jarvis, G.T., Time-dependent convection in the Earth’s mantle, Phys. Earth Planet. Inter., 36 (1984), 305–327.

    Article  ADS  Google Scholar 

  21. Jarvis, G.T. and W.R. Peltier, Mantle convection as a boundary-layer phenomenon, Geophys. J.R. astr. Soc., 68 (1982), 385–424.

    ADS  Google Scholar 

  22. Jurdy, D.M., Ridges, trenches and polar wander excitation, J. Geophys. Res., 83 (1978), 4889–4894.

    Article  ADS  Google Scholar 

  23. Karig, D.E., Evolution of arc systems in the western Pacific, Ann. Rev. Earth Planet. Sci., 2 (1974), 51–75.

    Article  ADS  Google Scholar 

  24. Kaula, W.M., Material properties for mantle convection consistent with observed surface fields, J. Geophys. Res., 85 (1980), 7031–7044.

    Article  ADS  Google Scholar 

  25. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl Akad. Nauk. USSR, 30 (1941), 301–307.

    ADS  Google Scholar 

  26. Lbong, C.W. and J.M. Ottino, Experiments on mixing due to chaotic advection in a cavity, J. Fluid Mech., 209 (1989), 463–499.

    Article  MathSciNet  ADS  Google Scholar 

  27. Li, P. and S. Karato, Superplasticity in CaTi0 3 perovskite, E.O.S., Transactions, A.G.U., vol. 72, no. 17 (1991), 287.

    Google Scholar 

  28. Liu, M., Yuen, D.A., Zhao, W. and S. Honda, Development of diapiric structures in the upper mantle due to phase transitions. Science, 252 (1991), 1836–1839.

    Article  ADS  Google Scholar 

  29. Loewen, S, Ahlborn, B. and A.B. Filuk, Statistics of surface flow structures on decaying grid turbulence, Phys. Fluids, 29 (1986), 2388–2397.

    Article  ADS  Google Scholar 

  30. Machetel, P. and D.A. Yuen, Chaotic axisymmethcal spherical convection and large-scale mantle ch-culation, Earth Planet. Sci. Lett., 86 (1987), 93–104.

    Article  ADS  Google Scholar 

  31. Machetel, P. and D.A. Yuen, Penetrative convective flows induced by internal heating and mantle compressibility, J. Geophys. Res., 94 (1989), 10, 609–10, 662.

    Google Scholar 

  32. Malevsky, A.V. and D.A. Yuen, Strongly chaotic non-Newtonian mantle convection, Geophys. Astro. Fluid. Dyn., in press, (1991a).

    Google Scholar 

  33. Malevsky, A.V. and D.A. Yuen, Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime, Phys. Fluids A3, 2105–2115, 1991b.

    ADS  Google Scholar 

  34. Masters, G., Jordan, T.H., Silver, P.G., and F. Gilbert, Aspherical earth structure from fundamental spheroidal mode data. Nature, 298 (1982), 609–613.

    Article  ADS  Google Scholar 

  35. Mc Williams, J.C., The vortices of two-dimensional turbulence, J. Fluid Mech., 219 (1990), 361–385.

    Article  ADS  Google Scholar 

  36. Miller, G.H., Stolper, E.M., and T.J. Ahrens, The equation of state of a molten komatiite, 2. Application to komatiite petrogenesis and the hadean mantle, J. Geophys. Res., 96, 11 (1991), 849–11.

    Google Scholar 

  37. Nisbet, E.g., The Young Earth, Allen and Unwin Inc., Boston, 1987, pp. 402.

    Google Scholar 

  38. Ohtani, E., The primordial terrestrial magma ocean and its implications for the stratification of the mantle, Phys. Earth Planet. Inter., 38 (1985), 70–80.

    Article  ADS  Google Scholar 

  39. Olson, P.L., and G.M. Corcos, A boundary layer model for mantle convection with surface plates, Geophys. J.R. astr. soc., 62 (1980), 195–219.

    Article  MATH  Google Scholar 

  40. Parmentier, E.M., Turcotte, D.L. and K.E. Torrance, Studies of finite amplitude non-Newtonian convection with applications to convection in the Earth’s mantle, J. Geophys. Res., 81 (1976), 1839–1846.

    Article  ADS  Google Scholar 

  41. Ranalli, G., Rheology of the Earth: Deformation and flow processes in geophysics and geodynamics. Chapter 10, Allen and Unwin, Boston, 1987.

    Google Scholar 

  42. Romkedar, V., Leonard A. and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow, J. Fluid Mech., 214 (1990), 347–394.

    Article  MathSciNet  ADS  Google Scholar 

  43. Sano, M., Wu, X. Z and L. Libchaber, Turbulence in helium-gas free convection, Phys. Rev. A. 40, (1989), 6421–6430.

    Article  ADS  Google Scholar 

  44. She, Z.S., On the scaling laws of thermal turbulent convection, Phys. Fluids Al (1989), 911–913.

    ADS  Google Scholar 

  45. Sirovich, L., Balachandar, S., and M.R. Maxey, Simulations of turbulent thermal convection, Phys. Fluids, Al (1989), 1911–1913.

    ADS  Google Scholar 

  46. Solomon, T.H. and J.P. Gollub, Sheared boundary layers in turbulent Rayleigh-Benard convection, Phys. Rev. Lett., 64 (1990), 2382–2385.

    Article  ADS  Google Scholar 

  47. Solomon, T.H. and J.P. Gollub, Thermal boundary layers and heat flux in turbulent convection: the role of recirculating Hows, Phys. Rev. A. 43 (1991), 6683–6693.

    Article  ADS  Google Scholar 

  48. Su, W.J. and A.M. Dziewonski, Predominance of long-wavelength heterogeneity in the mantle. Nature, 352 (1991), 121–126.

    Article  ADS  Google Scholar 

  49. Tanimoto, T., Long wavelength S-wave velocity structure throughout the mantle, Geophys. J., 100 (1990a), 327–336.

    Article  ADS  Google Scholar 

  50. Tanimoto, T., Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle, J. Phys. Earth, 38 (1990b), 493–509.

    Article  Google Scholar 

  51. Tonks, W.B. and H. J. Melosh, The physics of crystal settling and suspension in a turbulent magma ocean, in Origin of the Earth, ed. by H.E. Newsom and J.H. Jones (1990), 151–174.

    Google Scholar 

  52. Turcotte, D.L. and E.R. Oxburgh, Finite amplitude convective cells and continental drift, J. Fluid Mech., 28 (1967), 29–42.

    Article  ADS  MATH  Google Scholar 

  53. Varosi, F., Antonsen, T.M. and E. Ott, The spectrum of fractal dimensions of passively convected scalar gradients in chaotic fluid flows, Phys. Fluids A 3 (1991), 1017–1028.

    Article  MathSciNet  ADS  Google Scholar 

  54. Vincent, A.P., Hansen, U., Yuen, D.A. Malevsky, A.V. and S.E. Kroening, On the origin of a characteristic frequency in hard thermal turbulence, Phys. Fluids, A(3) (1991), 2222–2226.

    Google Scholar 

  55. Weinstein, S.A., Olson, P.L., and D.A. Yuen, Time-dependent large aspect-ratio thermal convection in the Earth’s mantle, Geophys. Astrophys. Fluid Dyn., 47 (1989), 157–197.

    Article  ADS  Google Scholar 

  56. Whitehead, J.A. and D.S. Luther, Dynamics of Laboratory diapir and plume models, J. Geo. Res., 80 (1975), 705–717.

    Article  ADS  Google Scholar 

  57. Whitehead, J.A. and K.R. Helfrich, Magma waves and diapiric dynamics, in Magma Transport and Storage, ed. by M.P. Ryan, John Wiley and Sons, Ltd., 1990, pp. 53–76.

    Google Scholar 

  58. Woodhouse, J.H. and A.M. Dziewonski, Mapping the upper mantle: three-dimensional modelling of earth structure by inversion of seismic waveforms, J. Geophys. Res., 89 (1984), 5953–5986.

    Article  ADS  Google Scholar 

  59. Woodward, R.L. and G. Masters, Lower mantle structure from SCS-S differential travel times. Nature, 352 (1991), 231–233.

    Article  ADS  Google Scholar 

  60. Wu, X.Z. Kadanoff L., Libchaber, A. and M. Sano, Frequency power spectrum of temperature fluctuations in free convection, Phys. Rev. Lett., 64 (1990), 2140–2143.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Yuen, D.A., Malevsky, A.V. (1992). Strongly Chaotic Newtonian and Non-Newtonian Mantle Convection. In: Yuen, D.A. (eds) Chaotic Processes in the Geological Sciences. The IMA Volumes in Mathematics and its Applications, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0643-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0643-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0645-0

  • Online ISBN: 978-1-4684-0643-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics