Skip to main content

Symmetry Techniques and Orthogonality for q-Series

  • Conference paper
q-Series and Partitions

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 18))

Abstract

We advocate the exploitation of symmetry (recurrence relation) techniques for the derivation of properties associated with families of basic hypergeometric functions, in analogy with the local Lie theory techniques for ordinary hypergeometric functions. Here these ideas are motivated from the theory of partial differential equations and then applied to the (continuous) Askey-Wilson polynomials, q-Hahn and big and little q-Jacobi polynomials to obtain strikingly simple derivations (rather than verifications) of their orthogonality relations and associated integrals. Some q-analogs of Barnes’ First Lemma are also derived as examples. This expository paper is based on joint work with Ernie Kalnins. Similar methods have been used by Nikiforov, Suslov and Uvarov.

Work supported in part by the National Science Foundation under grant DMS 86-00372

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Agarwal, E.G. Kalnins, AND W. Miller (1987), Canonical equations and symmetry techniques for q-series, SIAM J. Math. Anal., 18, pp. 1519–1538.

    Article  MathSciNet  MATH  Google Scholar 

  2. G.E. Andrews AND R. Askey (1985), Classical Orthogonal Polynomials, Lecture Notes # 1171, Springer-Verlag, New York, Berlin, pp. 36–62.

    Google Scholar 

  3. R. Askey AND R. Roy (1986), More q-beta integrals, Rocky Mtn. J. Math., 26, pp. 365–372.

    Article  MathSciNet  Google Scholar 

  4. R. Askey AND J. Wilson (1985), Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs of the AMS, no. 319.

    Google Scholar 

  5. N. M. Atakishiyev AND S. K. Suslov (1985), The Hahn and Meixner polynomials of an imaginary argument and some of their applications, J. Phys. A., Math. Gen., no. 18, pp. 1583–1596.

    Article  MathSciNet  Google Scholar 

  6. W.N. Bailey (1964), Generalized Hypergeometric Series, Cambridge Univ. Press, 1935, Reprinted by Stechert-Hafner, New York.

    Google Scholar 

  7. E. Bannai AND T. Ito (1984), Algebraic Combinatorics I, Association Schemes, Benjamin/Cummings, Menlo Park, California.

    MATH  Google Scholar 

  8. H. Bateman, Partial Differential Equations of Mathematical Physics, (1st ed., 932), Cambridge Univ. Press, London and New York, 1969.

    Google Scholar 

  9. W. Hahn (1949A), über Orthogonal polynôme, die q-Differenzengleichen genügen, Math. Nachr., 2, pp. 4–34.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Hahn (1949B), Beitrage zur théorie der heinschen reihen, Math. Nachr., 2, pp. 340–379.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Infeld AND T. Hull (1951), The factorization method, Revs. Mod. Phys., 23, pp. 21–68.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Inoui (1948), Unified theory of recurrence formulas, Progr. Theoret. Phys., 3, pp. 169–187, 244-261.

    Google Scholar 

  13. M.E.-H. Ismail AND J.A. Wilson (1982), Asymptotic and generating relations for the q-Jacobi and 4ϕ3 polynomials, J. Approx. Theory, 36, pp. 43–54.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Jimbo (1985), A q-difference analogue of U(g) and the Yang-Baxter equation, Letters in Mathematical Physics, 10, pp. 63–69.

    Article  MathSciNet  MATH  Google Scholar 

  15. E.G. Kalnins, H.L. Manocha AND W. Miller (1980), The Lie theory of two-variable hypergeometric functions, Stud. Appl. Math., 62, pp. 143–173.

    MathSciNet  MATH  Google Scholar 

  16. E.G. Kalnins AND W. Miller (1989), Symmetry techniques for q-series: Askey-Wilson polynomials, Rocky Mtn. J. Math., to appear.

    Google Scholar 

  17. H.T. Koelink AND T.H. Koornwinder (1989), The Clebsch-Gordan coefficients for the quantum group S μU (2) and q-Hahn polynomials, CWI Report.

    Google Scholar 

  18. T.H. Koornwinder (1988), Representations of the S μ U(2) quantum group and some q-hypergeometric orthogonal polynomials, CWI Rep. PM-R8809, to appear in Indag. Math..

    Google Scholar 

  19. T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi AND K. Ueno (1988), Representations of quantum groups and a q-analog of orthogonal polynomials, Preprint RIMS-613, Kyoto University.

    Google Scholar 

  20. W. Miller (1968), Lie Theory and Special Functions, Academic Press, New York.

    MATH  Google Scholar 

  21. W. Miller (1970), Lie theory and q-difference equations, SIAM J. Math. Anal., 1, pp. 171–188.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Miller (1987), A note on Wilson polynomials, SIAM J. Math. Anal., 18, pp. 1221–1226.

    Article  MathSciNet  MATH  Google Scholar 

  23. A.F. Nikiforov AND S.K. Suslov (1986), Classical orthogonal polynomials of a discrete variable on nonuniform lattices, Lett. Math. Phys., 11, pp. 27–34.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. F. Nikiforov, S.K. Suslov, AND V.B. Uvarov (1985), Classical Orthogonal Polynomials of a Discrete Variable, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  25. D.B. Sears (1951), On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2), 53, pp. 158–180.

    Article  MathSciNet  MATH  Google Scholar 

  26. L.J. Slater (1966), Generalized Hypergeometric Functions, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  27. D. Stanton (1984), Orthogonal polynomials and Chevalley groups, pp. 87–128 in Special Functions: Group Theoretical Aspects and Applications, R.A. Askey, T.H. Koomwinder and W. Schempp (Eds. ), D. Reidel, Boston.

    Google Scholar 

  28. S. K. Suslov (1984), The Hahn polynomials in the Coulomb problem, Sov. J. Nuc. Phys., 40(1), pp. 79–82.

    Google Scholar 

  29. G.N. Watson (1910), The continuation of functions defined by generalized hypergeometric series, Trans Cambridge Phil. Soc., 21, pp. 281–299.

    Google Scholar 

  30. E.T. Whittaker AND G.N. Watson (1958), A Course in Modern Analysis, Cambridge University Press, Cambridge.

    Google Scholar 

  31. J. Wilson (1977), Orthogonal functions from Gram determinants, unpublished manuscript.

    Google Scholar 

  32. J. Wilson (1980), Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal., 11, pp. 690–701.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. L. Woronowicz (1987), Twisted 5(7(2) group. An example of a noncommutative differential calculus, Publ. RIMS, Kyoto Univ., 23, pp. 117–181.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Miller, W. (1989). Symmetry Techniques and Orthogonality for q-Series. In: Stanton, D. (eds) q-Series and Partitions. The IMA Volumes in Mathematics and Its Applications, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0637-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0637-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0639-9

  • Online ISBN: 978-1-4684-0637-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics