Skip to main content

On the Existence of Occupation Densitites of Stochastic Integral Processes via Operator Theory

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 24))

Abstract

Fourier analysis provides one of the well known methods by which local behaviour of Gaussian processes, especially their occupation densities, can be investigated. Berman [3] initiated on approach which proved to be rather successful also in the more general area of Gaussian random fields and random fields with independent increments (see Geman, Horowitz [6] for a survey, Ehm [4]). The observation basic to this approach is comprised in the statement: the Fourier transform of the occupation measure of a real valued function is square integrable if and only if it posesses a square integrable density which then serves as a “local time” or “occupation density”. It is therefore, at least in principle, quite general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgärtel, H. Analytic perturbation theory for matrices and operators. Birkhäuser: Basel, Boston (1985).

    Google Scholar 

  2. Bellman, R.: Introduction to matrix analysis. McGraw-Hill: New York (1970).

    MATH  Google Scholar 

  3. Berman, S.M.: Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969), 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ehm, W.: Sample function properties of multi-parameter stable processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 56 (1981), 195–228.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27 (1903), 365–390.

    Article  MathSciNet  MATH  Google Scholar 

  6. Geman, D., Horowitz, J. Occupation densities. Ann. Probab. 8 (1980), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  7. Imkeller, P. Occupation densities for stochastic integral processes in the second Wiener chaos. Preprint, Univ. of B.C. (1990).

    Google Scholar 

  8. Jeulin,Th.,Yor,M. (eds). Grossissement de filtrations: exemples et applications. Séminaire de Calcul Stochastique, Paris 1982/83. LNM 1118. Springer: Berlin, Heidelberg, New York (1985).

    Google Scholar 

  9. Jörgens, K. Linear integral operators. Pitman: Boston, London (1982).

    Google Scholar 

  10. Kato, T.: Perturbation theory for linear operators. Springer: Berlin, Heidelberg, New York (1966).

    Google Scholar 

  11. Nualart, D.: Noncausal stochastic integrals and calculus. LNM 1516. Springer: Berlin, Heidelberg, New York (1988).

    Google Scholar 

  12. Nualart, D., Pardoux, E. Stochastic calculus with anticipating integrands. Probab. Th. Rel. Fields 78 (1988), 535–581.

    Article  MathSciNet  MATH  Google Scholar 

  13. Nualart, D., Pardoux, E. Boundary value problems for stochastic differential equation. Preprint (1990).

    Google Scholar 

  14. Nualart, D., Pardoux, E.: Second order stochastic differential equations with Dirichlet boundary conditions. Preprint (1990).

    Google Scholar 

  15. Nualart, D., Zakai, M.: Generalized stochastic integrals and the Malliavin calculus. Probab. Th. Rel. Fields 73 (1986), 255–280.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ocone, D., Pardoux, E.: Linear stochastic differential equations with boundary conditions. Probab. Th. Rel. Fields, to appear. (1990).

    Google Scholar 

  17. Pietsch, A.Eigenvalues and s-numbers. Cambridge University Press: Cambridge, London (1987).

    Google Scholar 

  18. Reed, M., Simon, B.: Methods of modern mathematical physics. IV: Analysis of operators. Acad. Press: New York (1978).

    Google Scholar 

  19. Rellich, F.: Perturbation theory of eigenvalue problems. Gordon, Breach: New York, London (1969).

    Google Scholar 

  20. Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Notes Series 35. Cambridge University Press: Cambridge, London (1979).

    Google Scholar 

  21. Skorohod, A.V.: On a generalization of a stochastic integral. Theor. Prob. Appl. 20 (1975), 219–233.

    Article  Google Scholar 

  22. Smithies, F.: Integral equations. Cambridge University Press: Cambridge, London (1965).

    Google Scholar 

  23. Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. Tata Institute of Fundamental Research. Springer: Berlin, Heidelberg, New York (1984).

    Google Scholar 

  24. Zakai, M.: The Malliavin calculus. Acta Appl. Math. 3 (1985), 175–207.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imkeller, P. (1991). On the Existence of Occupation Densitites of Stochastic Integral Processes via Operator Theory. In: Çinlar, E., Fitzsimmons, P.J., Williams, R.J. (eds) Seminar on Stochastic Processes, 1990. Progress in Probability, vol 24. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0562-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0562-0_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3488-9

  • Online ISBN: 978-1-4684-0562-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics