Skip to main content

Functional Implications of Tonic and Phasic Activity Changes in Nucleus Basalis Neurons

  • Chapter
Activation to Acquisition

Abstract

The basal forebrain cholinergic system (BFCS) has become a focus of research in many laboratories over the past decade. Current interest in this system began in the mid-1970s when a population of neurons in the basal forebrain was discovered to project to cerebral cortex (Divac, 1975; Kievit and Kuypers, 1975). It was later established that the neurotransmitter for the cortically projecting neurons was acetylcholine (ACh) (Mesulam et al., 1983; Rye et al., 1984) and that these neurons provided the major source of cholinergic input to cortex (Lehmann et al., 1980; Wenk et al., 1980; Johnston et al., 1981; Struble et al., 1986). Also in the mid-1970s, ACh became strongly implicated in Alzheimer’s disease (AD) because cholinergic markers were found to be severely reduced in the brains of AD patients (Davies and Maloney, 1976; Perry et al., 1977; Spillane et al., 1977). By the early 1980s, the nucleus basalis, the largest component of the BFCS, was shown to have a substantial loss of neurons in patients with AD (Whitehouse et al., 1982). The depletion of nucleus basalis neurons was hypothesized to account for the decrease in cortical cholinergic markers which could possibly lead to the cognitive deterioration of AD (Bartus et al., 1982; Coyle et al., 1983). These findings stimulated a great deal of interest in the anatomical and physiological properties of the BFCS in an effort to understand its role in normal brain function and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendt, T., Bigl, V., Tennstedt, A. and Arendt, A. (1985): Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s Disease. NeuroSci. 14:1–14

    Article  Google Scholar 

  • Artola, A. and Singer, W. (1987): Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652

    Article  Google Scholar 

  • Aston-Jones, G. and Bloom, F.E. (1981): Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. NeuroSci. 1:876–886

    Google Scholar 

  • Baranyi, A. and Szente, M.B. (1987): Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex. Brain Res. 423: 378–384

    Article  Google Scholar 

  • Bartus, R.T., Dean III R.L., Beer, B. and Lippa, A.S. (1982): The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Article  Google Scholar 

  • Batsei, H.L. (1960): Electroencephalographic synchronization and desynchroniza-tion in the chronic ‘cerveau isole’ of the dog. Electroenceph. Clin. Neuro-physiol. 12:421–430

    Article  Google Scholar 

  • Benardo, L.S. and Prince, D.A. (1982): Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res. 249:333–344

    Article  Google Scholar 

  • Benson, D.M., Blitzer, R.D. and Landau, E.M. (1988): An analysis of the depolarization produced in guinea-pig hippocampus by cholinergic receptor stimulation. J. Physiol. 404:479–496

    Google Scholar 

  • Bigl, V., Woolf, N.J. and Butcher, L.L. (1982): Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull. 8:727–749

    Article  Google Scholar 

  • Broadhurst, P.L. (1959): The interaction of task difficulty and motivation: the Yerkes-Dodson Law revived. Acta Psychologica 16:321–338

    Article  Google Scholar 

  • Brown, D.A. (1983): Slow cholinergic excitation — a mechanism for increasing neuronal excitability. Trends NeuroSci. 6:302–307

    Article  Google Scholar 

  • Burton, M.J., Rolls, E.T. and Mora, F. (1976): Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51:668–677

    Article  Google Scholar 

  • Buzsáki, G., Bickford, R.G., Ponomareff, G., Thal, LJ., Mandel, R. and Gage, F. (1988): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. NeuroSci. 8:4007–4026

    Google Scholar 

  • Casamenti, F., Deffneu, G., Abbamondi, A.L. and Pepeu, G. (1986): Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res. Bull. 16:689–695

    Article  Google Scholar 

  • Celesia, G.G. and Jasper, H.H. (1966): Acetylcholine released from cerebral cortex in relation to state of activation. Neurol. 16:1053–1063

    Article  Google Scholar 

  • Cole, A.E. and Nicoll, R.A. (1984): Characterization of a slow cholinergic postsynaptic potential recorded in vitro from rat hippocampal pyramidal cells. J. Physiol. 352:173–188

    Google Scholar 

  • Collerton, D. (1986): Cholinergic function and intellectual decline in Alzheimer’s disease. NeuroSci. 19:1–28

    Article  Google Scholar 

  • Coyle, J.T., Price, D.L. and DeLong, M.R. (1983): Alzheimer’s Disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  Google Scholar 

  • Das, G.D. and Kreutzberg, G.W. (1968): Evaluation of interstitial nerve cells in the central nervous system: a correlative study using acetylcholinesterase and Golgi techniques. Ergeb. Anat. Entwickl. Gesch. 41:1–58

    Google Scholar 

  • Davies, P. and Maloney, A.J.F. (1976): Selective loss of central cholinergic neurons in Alzheimer’s Disease. Lancet 2:1403

    Article  Google Scholar 

  • DeLong, M.R. (1971): Activity of pallidal neurons during movement. J. Neuro-physiol. 34:414–427

    Google Scholar 

  • Detarí, L. and Vanderwolf, C.H. (1987): Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res. 437:1–8

    Article  Google Scholar 

  • Divac, I. (1975): Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res. 93:385–398

    Article  Google Scholar 

  • Elias, H. and Schwartz, D. (1969): Surface areas of cerebral cortex of mammals determined by stereological methods. Science 166:111–113

    Article  Google Scholar 

  • Francesconi, W., Muller, C.M. and Singer, W. (1988): Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. J. Neurophysiol. 59:1690–1718

    Google Scholar 

  • Halliwell, J.V. and Adams, P.R. (1982): Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250:71–92

    Article  Google Scholar 

  • Hirsch, J.C., Fourment, A. and Marc, M.E. (1982): Electrophysiological study of the perigeniculate region during natural sleep in the cat. Exp. Neurol. 77:436–454

    Article  Google Scholar 

  • Iriki, A., Pavlides, C., Keller, A. and Asanuma, H. (1989): Long-term potentiation in the motor cortex. Science 245:1385–1387

    Article  Google Scholar 

  • Irle, E. and Markowitsch, H.J. (1986): Afferent connections of the substantia in-nominata/basal nucleus of Meynert in carnivores and primates. J. Hirnforsch. 27:343–367

    Google Scholar 

  • Johnston, M.V., McKinney, M. and Coyle, J.T. (1981): Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat. Exp. Brain Res. 43:159–172

    Article  Google Scholar 

  • Jordan, L.M. and Phillis, J.W. (1972): Acetylcholine inhibition in the intact and chronically isolated cerebral cortex. Br. J. Pharmacol. 45:584–595

    Article  Google Scholar 

  • Kievit, J. and Kuypers, H.G.J.M. (1975): Basal forebrain and hypothalmic connections to the frontal and parietal cortex in the rhesus monkey. Science 187:600–662

    Article  Google Scholar 

  • Koliatsos, V.E., Martin, L.J., Walker, L.C., Richardson, R.T., DeLong, M.R. and Price, D.L. (1988): Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Res. 463:133–139

    Article  Google Scholar 

  • Krnjević, K. and Phillis, J.W. (1963): Acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. 166:296–327

    Google Scholar 

  • Krnjević, K., Pumain, R. and Renaud, L. (1971): The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. 215:247–268

    Google Scholar 

  • Kurosawa, M., Sato, A. and Sato, Y. (1989): Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci. Lett. 98:45–50

    Article  Google Scholar 

  • Lamour, Y., Dutar, P., Rascol, O. and Jobert, A. (1986): Basal forebrain neurons projecting to the rat frontoparietal cortex: electrophysiological and pharmacological properties. Brain Res. 362:122–131

    Article  Google Scholar 

  • Lamour, Y., Dutar, P., Jobert, A. and Dykes, R.W. (1988): An iontophoretic study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis of glutamate and acetylcholine effects on receptive-field properties. J. Neurophysiol. 60:725–750

    Google Scholar 

  • Lehmann, J., Nagy, J.I., Armadja, S. and Fibiger, H.C. (1980): The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. NeuroSci. 5:1161–1174

    Article  Google Scholar 

  • Lehmann, J., Struble, R.G., Antuono, P.G., Coyle, J.T., Cork, L.C. and Price, D.L. (1984): Regional heterogeneity of choline acetyltransferase activity in primate neocortex. Brain Res. 322:361–364

    Article  Google Scholar 

  • Levey, A.I., Hallanger, A.E. and Wainer, B.H. (1987): Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci. Lett. 74:7–13

    Article  Google Scholar 

  • Livingstone, M.S. and Hubel, D.H. (1981): Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–561

    Article  Google Scholar 

  • LoConte, G., Casamenti, F., Bigl, V., Milaneschi, E. and Pepeu, G. (1982): Effect of magnocellular forebrain nuclei lesions on acetycholine output from the cerebral cortex, electrocorticogram and behaviour. Arch. Ital. Biol. 120:176–188

    Google Scholar 

  • Longo, V.G. (1955): Effects of scopolamine and atropine on electroencephalo-graphic and behavioral reactions due to hypothalamic stimulation. J. Pharmacol. 116:198–208

    Google Scholar 

  • Luiten, P.G.M., Gaykema, R.P.A., Traber, J. and Spencer Jr, D.G. (1987): Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported phaseolus vulgaris leucoagglutin. Brain Res. 413:229–250

    Article  Google Scholar 

  • Madison, D.V., Lancaster, B. and Nicoll, R.A. (1987): Voltage clamp analysis of cholinergic action in the hippocampus. J. NeuroSci. 7:733–741

    Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1985): Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J. Physiol. 169–194

    Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1986): Acetylcholine induces burst firing in thalamic reticular neurons by activating a potassium conductance. Nature 319:402–405

    Article  Google Scholar 

  • McKenna, T.M., Ashe, J.H., Hui, G.K. and Weinberger, N.M. (1988): Muscarinic agents modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2:54–68

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H. (1983): Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol 214:170–197

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Wainer, B.H. and Levey, A.I. (1983): Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). NeuroSci. 10:1185–1201

    Article  Google Scholar 

  • Mesulam, M.-M. and Mufson, E.J. (1984): Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    Article  Google Scholar 

  • Mesulam, M.-M., Volicer, L., Marquis, J.K., Mufson, E.J. and Green, R.C. (1986): Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann. Neurol. 19:144–151

    Article  Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R.W. (1987): Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. NeuroSci. 22:75–81

    Article  Google Scholar 

  • Metherate, R. and Weinberger, N.M. (1989): Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res. 480:372–377

    Article  Google Scholar 

  • Mitchell, S.J., Richardson, R.T., Baker, F.H. and DeLong, M.R. (1987): The primate nucleus basalis of Meynert: neuronal activity related to a visuomotor tracking task. Exp. Brain Res. 68:506–515

    Google Scholar 

  • Mora, F., Rolls, E.T. and Burton, M.J. (1976): Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food. Exp. Neurol. 53:508–519

    Article  Google Scholar 

  • Mukhametov, L.M., Rizzolatti, G. and Tratardi, V. (1970): Spontaneous activity of neurons of nucleus reticularis thalami in freely moving cats. J. Physiol. 210:651–667

    Google Scholar 

  • Parent, A., Gravel, S. and Boucher, R. (1981): The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res. Bull. 6:23–38

    Article  Google Scholar 

  • Parent, A., Pare, D., Smith, Y. and Steriade, M. (1988): Basal forebrain cholingeric and noncholinergic projections to the thalamus and brainstem in cats and monkeys. J. Comp. Neurol. 277:281–301

    Article  Google Scholar 

  • Pepeu, G. (1974): The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms. Prog. Neurobiol. 2:257–288

    Google Scholar 

  • Perry, E., Perry, R., Blessed, G. and Tomlinson, B. (1977): Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189

    Article  Google Scholar 

  • Price, J.L. and Stern, R. (1983): Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res. 269:352–356

    Article  Google Scholar 

  • Rasmussen, K., Morilak, D.A. and Jacobs, B.L. (1986): Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res. 371:324–334

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1986): Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364–368

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1987): Tonically active nucleus basalis neurons in the awake monkey project to cerebral cortex. Soc. Neurosci. Abstr. 13:1027

    Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1988): A reappraisal of the functions of the nucleus basalis of Meynert. Trends NeuroSci. 11:264–267

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1990a): Responses of primate nucleus basalis neurons to water rewards and related stimuli. In: Brain Cholinergic Systems. Steriade, M., and Biesold, D., eds. Oxford: Oxford University Press, in press

    Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1990b): Context dependent responses of primate nucleus basalis neurons in a go/no-go task. J. NeuroSci., in press

    Google Scholar 

  • Richardson, R.T., Mitchell, S.J., Baker, F.H. and DeLong, M.R. (1988): Responses of nucleus basalis of Meynert neurons in behaving monkeys. In: Cellular mechanisms of conditioning and behavioral plasticity. Woody, C.D., Alkon, D.L., and McGaugh, J.L., eds. New York: Plenum Publishing Corp, pp. 161–173

    Google Scholar 

  • Rolls, E.T., Burton, M.J. and Mora, F. (1976): Hypothalamic neuronal responses associated with the sight of food. Brain Res. 111:53–66

    Article  Google Scholar 

  • Rolls, E.T., Sanghera, M.K. and Roper-Hall, A. (1979): The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res. 164:121–135

    Article  Google Scholar 

  • Russchen, F.T., Amaral, D.G. and Price, J.L. (1985): The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J. Comp. Neurol. 242:1–27

    Article  Google Scholar 

  • Rye, D.B., Wainer, B.H., Mesulam, M.M., Mufson, E.J. and Saper, C.B. (1984): Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. NeuroSci. 13:627–643

    Article  Google Scholar 

  • Saper, C.B. (1987): Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Handbook of Physiology. The Nervous System. Higher Functions of the Brain. Mountcastle, V.B., and Plum, F., eds. Bethesda: American Physiological Society, pp. 169–209

    Google Scholar 

  • Sato, H., Hata, Y., Masui, H. and Tsumoto, T. (1987a): A functional role of cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 58:765–780

    Google Scholar 

  • Sato, H., Hata, Y., Hagihara, K. and Tsumoto, T. (1987b): Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol. 58:781–794

    Google Scholar 

  • Sillito, A.M. and Kemp, J.A. (1983): Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res. 289:143–155

    Article  Google Scholar 

  • Singer, W., Tretter, F. and Cynader, M. (1976): The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex. Brain Res. 102:71–90

    Article  Google Scholar 

  • Skinner, J.E. (1970): Electrocortical desynchronization during functional blockade of the mesencephalic reticular formation. Brain Res. 22:254–258

    Article  Google Scholar 

  • Smith, G. (1988): Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Res. Rev. 13:103–116

    Article  Google Scholar 

  • Sofroniew, M.V., Priestley, J.V., Consolazione, A., Eckenstein, F. and Cuello, A.C. (1985): Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res. 329:213–223

    Article  Google Scholar 

  • Spillane, J.A., White, P., Goodhardt, M.J., Flack, R.H.A., Bowen, D.M. and Davison, A.N. (1977): Selective vulnerability of neurons in organic dementia. Nature 266:558–559

    Article  Google Scholar 

  • Steriade, M.(1984): The excitatory-inhibitory response sequence in thalamic and neocortical cells: state-related changes and regulatory systems. In: Dynamic Aspects of Neocortical Function. Edelman, G.M., Gall, W.E., and Cowan, W.M.,. eds. New York: John Wiley & Sons, pp. 107–157

    Google Scholar 

  • Stewart, D.J., Macfabe, D.F. and Vanderwolf, C.H. (1984): Cholinergic activation of the electrocorticogram: role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Res. 322:219–232

    Article  Google Scholar 

  • Struble, R.G., Lehmann, J.L., Mitchell, S.J., McKinney, M., Price, D.L., Coyle, J.T. and DeLong, M.R. (1986): Basal forebrain neurons provide major cholinergic innervation of primate neocortex. Neurosci. Lett. 66:215–220

    Article  Google Scholar 

  • Szymusiak, R. and McGinty, D. (1986): Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res. 370:82–92

    Article  Google Scholar 

  • Szymusiak, R. and McGinty, D. (1989): Sleep-waking discharge of basal forebrain projection neurons in cats. Brain Res. Bull. 22:423–430

    Article  Google Scholar 

  • Thompson, R.F. (1986): The neurobiology of learning and memory. Science 233: 941–947

    Article  Google Scholar 

  • Trulson, M.E. and Jacobs, B.L. (1979): Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 16:135–150

    Article  Google Scholar 

  • Vanderwolf, C.H. (1975): Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J. Comp. Physiol. 88:300–323

    Google Scholar 

  • Villablanca, J. (1962): Electroencephalogram in the permanently isolated fore-brain of the cat. Science 138:44–46

    Article  Google Scholar 

  • Walker, L., Kitt, C.A., DeLong, M.R. and Price, D.L. (1985): Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates. Brain Res. Bull. 15:307–314

    Article  Google Scholar 

  • Walker, L.C., Koliatsos, V.E., Kitt, C.A., Richardson, R.T., Rokaeus, A. and Price, D.L. (1989a): Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J. Comp. Neurol. 280:272–282

    Article  Google Scholar 

  • Walker, L.C., Price, D.L. and Young, W.S. (1989b): Gabaergic neurons in the primate basal forebrain magnocellular complex. Brain Res. 499:188–192

    Article  Google Scholar 

  • Wenk, H., Bigl, V. and Meyer, U. (1980): Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res. Rev. 2:295–316

    Article  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982): Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  Google Scholar 

  • Woody, C.D., Swartz, B.E. and Gruen, E. (1978): Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158:373–395

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richardson, R.T., DeLong, M.R. (1991). Functional Implications of Tonic and Phasic Activity Changes in Nucleus Basalis Neurons. In: Richardson, R.T. (eds) Activation to Acquisition. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0556-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0556-9_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-0558-3

  • Online ISBN: 978-1-4684-0556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics