Skip to main content

Input/Output Relations of the Magnocellular Nuclei of the Basal Forebrain

  • Chapter

Abstract

The magnocellular nuclei of the basal forebrain (MNBF) consist of several groups of cholinergic and non-cholinergic cells scattered through the septum, substantia innominata, peripallidum and preoptic region. Although anatomically confusing, this distribution is understandable if it is realized that all of the groups are situated within and along the major fiber pathways of the ventral forebrain. Thus, the nuclei of the diagonal band and the medial septal nucleus are arrayed along the vertical and horizontal limbs of the diagonal band (of Broca), and continue back into the rostral part of the medial forebrain bundle. The nucleus basalis is partially situated along the medial forebrain bundle, but is also related to the ventral amygdalofugal pathway, the ansa lenticularis and (in primates) the medullary laminae of the globus pallidus. As seen with the Golgi method, all these nuclei are made up of multipolar cells with long radiating, spine-free dendrites that extend across the fiber bundles, apparently receiving synaptic inputs from a large number of fibers. Thus, based on their anatomical configuration, cells throughout the MNBF appear to have the capacity to sample and integrate diverse information passing between structures such as the orbito-medial prefrontal cortex, septum, amygdaloid complex, hypothalamus and brainstem. This information may be presumed to shape the functional outputs that the MNBF sends to the cerebral cortex and other telencephalic structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner, T., Mitchell, S., Aggleton, J., DeLong, M., Struble, R., Wenk, G., Price, D. and Mishkin, M. (1984): Recognition deficit in monkeys following neurotoxic lesions of the basal forebrain. Neurosci. Abstr. 10:386

    Google Scholar 

  • Aigner, T.G., Mitchell, S.J., Aggleton, J.R., DeLong, M.R., Struble, R.G., Wenk, G.L., Price, D.L. and Mishkin, M. (1987): Effects of scopolamine and physostigmine on recognition memory in monkeys with ibotenic-acid lesions of the nucleus basalis of Meynert. Psychopharmacol. 92:292–300

    Article  Google Scholar 

  • Alonso, A. and Kohler, C. (1982): Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neurosci. Lett. 31:209–214

    Article  Google Scholar 

  • Amaral, D.G. and Cowan, W.M. (1980): Subcortical afferents to the hippocampal formation in the monkey. J. Comp. Neurol. 189:573–591

    Article  Google Scholar 

  • Amaral, D.G. and Price, J.L. (1984): Amygdalo-cortical projections in the monkey. J. Comp. Neurol. 230:465–496

    Article  Google Scholar 

  • Asanuma, C. (1989): Axonal arborizations of a magnocellular basal nucleus input and their relation to the neurons in the thalamic reticular nucleus of rats. Proc. Natl. Acad. Sci. 86:4746–4750

    Article  Google Scholar 

  • Bachevalier, J. and Mishkin, M. (1986): Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20:249–261

    Article  Google Scholar 

  • Bigl, S.J., Woolf, N. J. and Butcher, L.L. (1982): Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. 8:727–749

    Google Scholar 

  • Bland, B.H. (1986): The physiology and pharmacology of hippocampal formation theta rhythms. Prog. in Neurobiol. 26:1–54

    Article  Google Scholar 

  • Carnes, K.M. and Price, J.L. (1988): Demonstration of individual fibers from the substantia innominata to the frontal cortex of the rat, using Phaseolus vulgaris leucoagglutinin (PHA-L). In: Neurobiology of Amino Acids, Peptides and Trophic Factors. Ferrendelli, J.A., Collins, R.C., Johnson, E.M., eds. Kluwer Academic Publishers, pp 215–218

    Chapter  Google Scholar 

  • Carnes, K.M., Fuller, T.A. and Price, J.L. (1990): Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat. J. Comp. Neurol. 302:824–852

    Article  Google Scholar 

  • Daitz, H.M. and Powell, T.P.S. (1954): Studies on the connexions of the fornix system. J. Neurol. Neurosurg. Psychiat. 17:75–82

    Article  Google Scholar 

  • Divac, I. (1975): Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb: review of some functional correlates. Brain Res. 93:385–398

    Article  Google Scholar 

  • Eckenstein, F.P., Baughman, R.W. and Quinn, J. (1988): An anatomical study of cholinergic innervation in rat cerebral cortex. Neurosci. 25:457–474

    Article  Google Scholar 

  • Eichenbaum, H., Kuperstein, M., Fagan, A. and Nagode, J. (1987): Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task. J. Neurosci. 7:716–732

    Google Scholar 

  • Fulwiler, C.E. and Saper, C.B. (1984): Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. 319:229–59

    Google Scholar 

  • Fuster, J.M. (1989): The Prefrontal Cortex. New York: Raven Press

    Google Scholar 

  • Gloor, P., Oliver, A., Quesney, L.F., Andermann, F. and Horowitz, S. (1980): The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann. Neurol. 12:129–144

    Article  Google Scholar 

  • Gogolak, G., Petsche, H., Sterc, J. and Stumpf, C. (1967): Septum cell activity in the rabbit under reticular stimulation. Brain Res. 5:508–510

    Article  Google Scholar 

  • Greenstein, Y.J., Pavlides, C. and Winson, J. (1988): Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Res. 438:331–334

    Article  Google Scholar 

  • Grove, E.A. (1988): Neural associations of the substantia innominata in the rat: afferent connections. J. Comp. Neurol. 277:315–346

    Article  Google Scholar 

  • Grove, E.A. and Ingham, C.A. (1986): Electron microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat. Neurosci. Abstr. 12:1328

    Google Scholar 

  • Haring, J.H. and Wang, R.Y. (1986): The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res. 366:152–158

    Article  Google Scholar 

  • Hellendall, R.P., Godfrey, D.A., Ross, C.D., Armstrong, D.M. and Price, J.L. (1985): The distribution of choline acetyltransferase in the rat amygdaloid complex and adjacent cortical areas as determined by quantitative micro-assay and immunohistochemistry. J. Comp. Neurol. 249:486–498

    Article  Google Scholar 

  • Irle, E. and Markowitsch, H.J. (1986): Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates. J. Hirnforsch 27:343–367

    Google Scholar 

  • Kluver, H. and Bucy, P.C. (1939): Preliminary analysis of functions of the temporal lobe in monkeys. Arch. Neurol. 42:979–1000

    Article  Google Scholar 

  • Kohler, C., Chan-Palay, V. and Wu, J. (1984): Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat. Embryol. 169:41–44

    Article  Google Scholar 

  • Kohler, C., Ericson, L., Watanabe, T., Polak, J. and Palay, S. (1986): Galanin-immunoreactivity is present in hypothalamic histamine neurons: further evidence for multiple chemical messengers in the tuberomammillary nucleus. J. Comp. Neurol. 250:58–65

    Article  Google Scholar 

  • Komisaruk, B. R. (1970): Synchrony between limbic system theta activity and rhythmical behavior in rats. J. Comp. Physiol. Psychol. 70:482–492

    Article  Google Scholar 

  • Komisaruk, B. R. (1977): The role of rhythmical brain activity in sensorimotor integration. In: Progress in Psychobiology and Physiological Psychology, Vol 7. Sprague, J.M., Epstein, A.N., eds. New York: Academic Press, pp 55–90

    Google Scholar 

  • Larson, J., Wong, D. and Lynch, G. (1986): Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368:347–350

    Article  Google Scholar 

  • Leonard, C.M., Rolls, E.T., Wilson, F.A. and Baylis, G.C. (1985): Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15:159–176

    Article  Google Scholar 

  • Luskin, M.B. and Price, J. L. (1982): The distribution of axon collaterals from the olfactory bulb and the nucleus of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. J. Comp. Neurol. 209:249–263

    Article  Google Scholar 

  • Macrides, F., Davis, B.J., Youngs, W.M., Nadi, N.S. and Margolis, F.F. (1981): Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical biochemical and histochemical investigation. J. Comp. Neurol. 203:495–514

    Article  Google Scholar 

  • Macrides, F., Eichenbaum, H.B. and Forbes, W.B. (1982): Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J. Neurosci. 2:1705–1717

    Google Scholar 

  • McKinney, M., Coyle, J.T. and Hedreen, J.C. (1983): Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J. Comp. Neurol. 217:103–121

    Article  Google Scholar 

  • McNaughton, N., James, D.T.D., Steward, J., Gray, J.A., Valero, I. and Drenowski, A. (1977): Septal driving of hippocampal theta rhythm as a function of frequency in the male rat: effect of drugs. Neurosci. 2:1019–1027

    Article  Google Scholar 

  • Mesulam, M.-M. and Mufson, E.J. (1984): Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain Res. 107:253–274

    Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H. (1983): Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214:170–197

    Article  Google Scholar 

  • Mishkin, M. (1982): A memory system in the monkey. Phil. Trans. R. Soc. Lond. B. 298:85–95

    Article  Google Scholar 

  • Murray, E.A. and Mishkin, M. (1986): Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocam-pectomy. J. Neurosci. 6:1991–2003

    Google Scholar 

  • Nickell, W.T. and Shipley, M.T. (1988): Two anatomically specific classes of candidate cholinoceptive neurons in the rat olfactory bulb. J. Neurosci. 8:4482–4491

    Google Scholar 

  • Nishijo, H., Ono, T. and Nishino, H. (1988): Single neuron responses in amygdala of alert monkeys during complex sensory stimulation with affective significance. J. Neurosci 8:3570–3583

    Google Scholar 

  • Price, J.L. and Powell, T.P.S. (1970a): An experimental study of the origin and the course of the centrifugal fibers to the olfactory bulb in the rat. J. Anat. 107:215–237

    Google Scholar 

  • Price, J.L. and Powell, T.P.S. (1970b): The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J. Anat. 107:239–256

    Google Scholar 

  • Price, J.L. and Slotnick, B.M. (1983): Dual olfactory representation in the rat thalamus: an anatomical and electrophysiological Study. J. Comp. Neurol. 215:63–77

    Article  Google Scholar 

  • Price, J.L. and Stern, R. (1983): Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res. 269:352–356

    Article  Google Scholar 

  • Reiman, E.M., Raichle, M.E., Robins, E., Mintun, M.A., Fusselman, M. J., Fox, P.T., Price, J.L. and Hackman, K.A. (1989): Neuroanatomical correlates of a lactate-induced anxiety attack. Arch. Gen. Psychiat. 46:493–500

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1986): Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364–368

    Article  Google Scholar 

  • Rigdon, G.C. and Pirch, J.H. (1986): Nucleus basalis involvement in conditioned neuronal reponses in the rat frontal cortex. J. Neurosci. 6:2535–2542

    Google Scholar 

  • Russchen, F.T., Amaral, D.G. and Price, J.L. (1985): The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J. Comp. Neurol. 242:1–27

    Article  Google Scholar 

  • Russchen, F.T., Amaral, D.G. and Price, J.L. (1987): The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J. Comp. Neurol. 256:175–210.

    Article  Google Scholar 

  • Rye, D.B., Wainer, B.H., Mesulam, -M.M., Mufson, E.J. and Saper, C.B. (1984): Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neurosci. 13:627–643

    Article  Google Scholar 

  • Saper, C.B. (1984): Organization of cerebral cortical afferent systems in the rat: I. Magnocellular basal nucleus. J. Comp. Neurol. 222:313–342

    Article  Google Scholar 

  • Semba, K., Reiner, P.B., McGeer, E.G. and Fibiger, H.C. (1988a): Non-cholinergic basal forebrain neurons project to the contralateral basal forebrain in the rat. Neurosci. Lett. 84:23–28

    Article  Google Scholar 

  • Semba, K., Reiner, P.B., McGeer, E.G. and Fibiger, H.C. (1988b): Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J. Comp. Neurol. 267:433–453

    Article  Google Scholar 

  • Steriade, M., Parent, A., Pare, D. and Smith, Y. (1987): Cholinergic and noncholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res. 408:372–376

    Article  Google Scholar 

  • Steriade, M. and Deschenes, M. (1988): Intrathalamic and brainstem-thalamic networks involved in resting and alert states. In: Cellular Thalamic Mechanisms. Bentivoglio, M., Spreafico, R., eds. Amsterdam: Excerpta Medica, pp. 37–62

    Google Scholar 

  • Swanson, L.W. and Cowan, W.M. (1979): The connections of the septal region in the rat. J. Comp. Neurol. 186:621–665

    Article  Google Scholar 

  • Swanson, L.W., Kohl, C. and Bjorklund, A. (1987): The limbic system. I: The septohippocampal system. In: Handbook of Chemical Neuroanatomy Vol. 5, Integrated systems in the CNS, part I, Björklund, A., Hökfelt, T., Swanson, L.W., eds. Amsterdam: Amsterdam, pp. 125–277

    Google Scholar 

  • Thorpe, S.J., Rolls, E.T. and Maddison, S. (1983): The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49:93–115

    Article  Google Scholar 

  • Vertes, R.P. (1986): Brainstem modulations of the hippocampus: anatomy, physiology, and significance. In: The Hippocampus, Vol. 4. Isaacson, R.L., Pribram, K.H., eds. New York: Plenum Press, pp. 41–75

    Chapter  Google Scholar 

  • Wilson, C.L., Motter, B.C. and Lindsley, D.B. (1976): Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat. Brain Res. 107:55–68

    Article  Google Scholar 

  • Wilson, F.A.W. and Rolls, E.T. (1985): Reinforcement-related unit activity in the basal forebrain and amygdala. Neurosci. Abstr. 11:525

    Google Scholar 

  • Yamano, M., Hillyard, C.J., Girgis, S., MacIntyre, I., Emson, P.C. and Tohy-ama, M. (1988): Presence of a substance P-like immunoreactive neuron system from the parabrachial area to the central amygdaloid nucleus of the rat with reference to coexistence with calcitonin gene-related peptide. Brain Res. 451:179–88

    Article  Google Scholar 

  • Young, W.S., Alheid, G.F. and Heimer, L. (1984): The ventral pallidal projection to the mediodorsal thalamus: a study with fluorescent retrograde tracers and immunohistofluorescence. J. Neurosci. 4:1626–1638

    Google Scholar 

  • Zaborszky, L., Carlsen, J., Brashear, H.R. and Heimer, L. (1986): Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 243:488–509

    Article  Google Scholar 

  • Zola-Morgan, S., Squire, L.R., Amaral, D.G. and Suzuki, W. A. (1989): Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. Neurosci. 9:4355–4370

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Price, J.L., Carnes, K.M. (1991). Input/Output Relations of the Magnocellular Nuclei of the Basal Forebrain. In: Richardson, R.T. (eds) Activation to Acquisition. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0556-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0556-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-0558-3

  • Online ISBN: 978-1-4684-0556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics