Skip to main content

Cholinergic Modulation of Synaptic Plasticity in Sensory Neocortex

  • Chapter
Activation to Acquisition

Abstract

Activity-dependent synaptic plasticity occurs in neocortex devoted to each sensory system at all postnatal ages. The process is crucial for the refinement of topographic cortical representations and the development of stimulus selectivity in the neonate, and although the plasticity is more subtle in the adult cortex, it probably forms the basis of dynamic changes in sensory representations and may account for some forms of memory. A question of central importance is whether the fundamental mechanisms of neuronal plasticity are the same at different ages and in different cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrien, J., Blanc, G., Buisseret, P., FrĂ©gnac, Y., Gary-Bobo, E., Imbert, M., Tassin, J.P. and Trotter, Y. (1985): Noradrenaline and functional plasticity in kitten visual cortex: a reexamination. J. Physiol (Lond.) 367:73–98

    Google Scholar 

  • Artola, A. and Singer, W. (1987): Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652

    Article  Google Scholar 

  • Barstad, K.E. and Bear, M.F. (1990): Basal forebrain projections to somatic sensory cortex in the cat. J Neurophysiol., in press

    Google Scholar 

  • Bear, M.F., Carnes, K.M. and Ebner, F.F. (1985a): An investigation of cholinergic circuitry in cat striate cortex using acetylcholinesterase histochemistry. J. Comp. Neurol. 234:411–430

    Article  Google Scholar 

  • Bear, M.F., Carnes, K.M. and Ebner, F.F. (1985b): Postnatal changes in the distribution of acetylcholinesterase in kitten striate cortex. J. Comp. Neurol. 237:519–534

    Article  Google Scholar 

  • Bear, M.F., Gu, Q., Kleinschmidt, A. and Singer, W. (1990): Disruption of experience-dependent synaptic modifications in the striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci., in press

    Google Scholar 

  • Bear, M.F., Kleinschmidt, A. and Singer, W. (1988): Experience-dependent modifications of kitten striate cortex are not prevented by thalamic lesions that include the intralaminar nuclei. Exp. Brain Res. 70:627–631

    Article  Google Scholar 

  • Bear, M.F., Paradiso, M.A., Schwartz, M., Nelson, S.B., Carnes, K.M. and Daniels, J.D. (1983): Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Nature 302:245–247

    Article  Google Scholar 

  • Bear, M.F. and Daniels, J.D. (1983): The plastic response to monocular deprivation persists in kitten striate cortex after chronic depletion of norepinephrine. J. Neurosci. 3:407–416

    Google Scholar 

  • Bear, M.F. and Singer, W. (1986): Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320:172–176

    Article  Google Scholar 

  • Butcher, L.L. (1977): Nature and mechanisms of cholinergic-monoaminergic interactions in the brain. Life Sci. 21:1207–1226

    Article  Google Scholar 

  • Clark, S.A., Allard, T., Jenkins, W.M. and Menzenich, M.M. (1988): Receptive fields in the body surface map in adult cortex defined by temporally correlated inputs. Nature 332:444–445

    Article  Google Scholar 

  • Cole, A.E., Nicoll, R.A. (1983): Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221:1299–1301

    Article  Google Scholar 

  • Collingridge, G.L., Kehl, S.L. and McLennan, H. (1983): Excitatory amino acids in synaptic transmission in the Schaffer collateral-commisural pathway of the rat hippocampus. J. Physiol. (Lond.) 334:33–46

    Google Scholar 

  • Daw, N.W., Robertson, T.W., Rader, R.K., Videen, T.O. and Coscia, C.J. (1984): Substantial reduction of cortical noradrenaline by lesions of adrenergic pathways does not prevent effects of monocular deprivation. J. Neurosci. 4:1354–1360

    Google Scholar 

  • DeLima, A.D. and Singer, W. (1986): Cholinergic innervation of cat striate cortex: a choline acetyltransferase immunocytochemical analysis. J. Comp. Neurol. 250:324–338

    Article  Google Scholar 

  • Dingledine, R. (1983): N-methylaspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells. J. Physiol. 343:385–405

    Google Scholar 

  • Donoghue, J.P. and Carroll, K.K. (1987): Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res. 408:367–371

    Article  Google Scholar 

  • Dykes, R.W., Metherate, R. and Tremblay, N. (1988): Cholinergic modulation of neuronal excitability in cat somatosensory cortex. Chapter In: Neurotransmitters and Function: From Molecules to Mind. Avoli, M., Reader, T., Dykes, R. and Gloor, P., eds. New York: Plenum Press

    Google Scholar 

  • Fibiger, H.C. (1982): The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. 257:327–388

    Google Scholar 

  • Freeman, R.D. and Bonds, A.B. (1979): Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement. Science 206:1093–1095

    Article  Google Scholar 

  • Gordon, B., Allen, E.E. and Tromblay, P.Q. (1988): The role of norepinephrine in plasticity of visual cortex. Prog. Neurobiol. 30:171–199

    Article  Google Scholar 

  • Gordon, B., Mitchell, B., Mohtadi, K., Roth, E., Tseng, Y. and Turk, F. (1989): Effect of norepinephrine and acetylcholine depletion on plasticity in kitten visual cortex. Neurosci. Abst. 15:796

    Google Scholar 

  • Houser, C.R., Crawford, G.D., Salvaterra, P.M. and Vaughn, J.E. (1985): Immunocytochemical localization of choline acetyltransferase in rat cerebral cortes: a study of cholinergic neurons and synapses. J. Comp. Neurol. 234:17–34

    Article  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1962): Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160:106–154

    Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1970): The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419–436

    Google Scholar 

  • Jenkins, W.M., Merzenich, M.M., Ochs, M.T. Allard, T. and Guic-Robles, E. (1990): Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J. Neurophysiol., in press

    Google Scholar 

  • Johnston, M.V., McKinney, M. and Coyle, J.T. (1981): Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat. Exp. Brain Res. 43:159–172

    Article  Google Scholar 

  • Juliano, S.L., Ma, W., Bear, M.F. and Eslin, D. (1988): Manipulation of cortical cholinergic innervation alters stimulus-evoked metabolic activity in cat somatosensory cortex. Soc. Neurosci. Abstr. 14:8448

    Google Scholar 

  • Juliano, S.L., Eslin, D and Ma, W. (1989): Lesions disrupting cortical cholinergic innervation prevent plasticity of somatosensory maps in cat somatosensory cortex. Soc. Neurosci. Abstr. 15:19

    Google Scholar 

  • Kalaska, J.F. and Pomeranz, B. (1979): Chronic paw denervation causes an age-dependent appearance of novel responses from forearm in “paw cortex” of kittens and adults rats. J. Neurophysiol. 42:618–633

    Google Scholar 

  • Kasamatsu, T., and Pettigrew, J.D. (1976): Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194:206–209

    Article  Google Scholar 

  • Kasamatsu, T. and Pettigrew, J.D. (1979): Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxy-dopamine. J. Comp. Neurol. 185:139–162

    Article  Google Scholar 

  • Kasamatsu, T., Pettigrew, J.D. and Ary, M. (1979): Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. Comp. Neurol. 185:163–182

    Article  Google Scholar 

  • Kleinschmidt, A., Bear, M.F. and Singer, W. (1987): Blockade of “NMDA” receptors disrupts experience-dependent modifications of kitten striate cortex. Science 238:355–358

    Article  Google Scholar 

  • Krnjević, K. (1988): Acetylcholine as transmitter in the cerebral cortex. Chapter In: Neurotransmitters and Function: From Molecules to Mind. Avoli, M., Reader, T., Dykes, R. and Gloor, P., eds. New York: Plenum Press

    Google Scholar 

  • Krnjević, K. and Phillis, J.W. (1963a): Acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. (Lond.) 166:296–327

    Google Scholar 

  • Krnjević, K. and Phillis, J.W. (1963b): Pharmacological properties of acetylcholine sensitive cells in the cerebral cortex. J. Physiol. (Lond.) 166:328–350

    Google Scholar 

  • Lindvall, O. and A. Björklund (1974): The organization of the ascending catecholamine neuron systems in the rat brain. Acta. Physiol. Scand. (Suppl.) 412:1–45

    Google Scholar 

  • Ma, W., Hohmann, C.F., Coyle, J.T. and Juliano, S.L. (1989): Lesions of the basal forebrain alter stimulus-evoked metabolic activity in mouse somatosensory cortex. J. Comp. Neurol. 288:414–427

    Article  Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1985): Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc. Natl. Acad. Sci. USA 82:6344–6348

    Article  Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1988): Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J. Neurophysiol. 59:978–996

    Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Nelson, R.J., Sur, M. and Felleman, D.J. (1983a): Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neurosci. 8:33–55

    Article  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Nelson, R.J. and Felleman, D.J. (1983b): Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neurosci 10:639–665

    Article  Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R.W. (1988a): The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J. Neurophysiol. 59:1231–1252

    Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R.W. (1988b): Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons. J. Neurophysiol 59:1253–1276

    Google Scholar 

  • Morrison, R.S. and Dempsey, E.W. (1942): A study of thalamocortical relations. Amer. J. Physiol 135:281–292

    Google Scholar 

  • Moruzzi, G. and Magoun, H.W. (1949): Brainstem reticular formation and activation of the EEG. EEG Clin. Neurophysiol 1:155–473

    Google Scholar 

  • Nicoll, R.A., Malenka, R.C. and Kauer, J.A. (1990): Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev. 70:513–565

    Google Scholar 

  • Paradiso, M.A., Bear, M.F. and Daniels, J.D. (1983): Effects of intracortical infusion of 6-hydroxydopamine on the response of kitten visual cortex to monocular deprivation. Exp. Brain Res. 51:413–422

    Article  Google Scholar 

  • Potempska, A., Skangiel-Kramska, J. and Kossut, M. (1979): Development of cholinergic enzymes and adenosinetriphosphatase activity of optic system of cats in normal and restricted visual input conditions. Dev. Neurosci 2:38–45

    Article  Google Scholar 

  • Rauschecker, J.P. and Singer, W. (1979): Changes in the circuitry of the kitten’s visual cortex are gated by postsynaptic activity. Nature 280:58–60

    Article  Google Scholar 

  • Richardson, R.T. and Delong, M.R. (1986): Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364–368

    Article  Google Scholar 

  • Robertson, D. and Irvine, D.R.F. (1989): Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282:456–471

    Article  Google Scholar 

  • Sato, H., Hata, Y., Masui, H. and Tsumoto, T. (1987a): A functional role of cholinergic innervation to neurons in cat visual cortex. J. Neurophysiol 58:765–794

    Google Scholar 

  • Sato, H., Hata, Y., Hagihava, K. and Tsumoto, T. (1987b): Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol 58:781–794

    Google Scholar 

  • Shaw, C., Needier, M.C. and Cynader, M. (1984): Ontogenesis of muscarinic acetylcholine binding sites in cat visual cortex: reversal of specific laminar distribution during the critical period. Dev. Brain Res. 14:295–299

    Article  Google Scholar 

  • Shute, C.C.D. and Lewis, P.R. (1967): The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–521

    Article  Google Scholar 

  • Sillito, A.M. and Kemp, J.A. (1983): Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res. 289:143–155

    Article  Google Scholar 

  • Singer, W. (1979): Central core control of visual cortex functions. In: The Neurosciences: Fourth Study Program. Schmitt, F.O. and Worden, F.G., eds. Cambridge, MA: MIT Press, pp 1093–1109

    Google Scholar 

  • Singer, W. (1982): Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Exp. Brain Res. 47:209–222

    Google Scholar 

  • Singer, W., and Rauschecker, J. (1982): Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Exp. Brain Res. 47:223–233

    Google Scholar 

  • Singer, W., Rauschecker, J. and Werth, R. (1977): The effect of monocular exposure to temporal contrasts on ocular dominance in kittens. Brain Res. 134:568–572

    Article  Google Scholar 

  • Stichel, C.C. and Singer, W. (1987): Quantitative analysis of the choline acetyl-transferase-immunoreactive axonal network in the cat primary visual cortex: I. Adult cats. J. Comp. Neurol. 258:91–98

    Article  Google Scholar 

  • Stone, T.W. (1972): cholinergic mechanisms in the rat somatosensory cerebral cortex. J. Physiol (Lond.) 225:485–499

    Google Scholar 

  • Szerb, J.C. (1967): Cortical ACh release and EEG arousal. J. Physiol. (Lond.) 192:329–343

    Google Scholar 

  • Tremblay, N., Warren, R.A. and Dykes, R.W. (1990a): Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. (I) Cortical neurons excited by glutamate. J. Neurophysiol., in press

    Google Scholar 

  • Tremblay, N., Warren, R.A. and Dykes, R.W. (1990b): Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat (II) cortical neurons excited by somatic stimuli. J. Neuro-physiol. in press

    Google Scholar 

  • Trombley, P., Allen, E.E., Soyke, J., Blaha, C.D., Lane, F.F. and Gordon, B. (1986): Doses of 6-hydroxydopamine sufficient to deplete norepinephrine are not sufficient to decrease plasticity in the visual cortex. J. Neurosci. 6:266–273

    Google Scholar 

  • Wiesel, T.N. and Hubel, D.H. (1963): Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 28:1029–1040

    Google Scholar 

  • Woody, C.D. and Gruen, E. (1988): Evidence that acetylcholine acts in vivo in layer V pyramidal cells of cats via GMP and a GMP-dependent protein kinase to produce a decrease in an outward current. In: Neurotransmitters and Cortical Function: From Molecules to Mind. Avoli, M., Reader, T., Dykes, R.W. and Gloor, P., eds. New York: Plenum Press

    Google Scholar 

  • Woody, C.D., Swartz, B.E. and Gruen, E. (1978): Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158:373–395

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dykes, R.W., Tremblay, N., Warren, R.A., Bear, M.F. (1991). Cholinergic Modulation of Synaptic Plasticity in Sensory Neocortex. In: Richardson, R.T. (eds) Activation to Acquisition. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0556-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0556-9_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-0558-3

  • Online ISBN: 978-1-4684-0556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics