Skip to main content

Ocular Dominance Plasticity in Kitten Visual Cortex: Integration of Noradrenergic and Cholinergic Regulation

  • Chapter
Activation to Acquisition

Abstract

Sensory cortex is a part of various ascending fiber projection systems, each of which originates from a relatively small number of chemically identified cells in the basal forebrain, brainstem or medulla. Catecholamine (CA) histochemistry, invented by the Swedish school in the early 1960’s, indeed opened up a new possibility of identifying each neuron based on its chemical signature or transmitter phenotype. The recent advent in development of specific immunological probes has further led to the explosion of detailed cytochemical mapping on the ascending fiber projection systems. Noradrenaline (NA) fibers, originating from the locus coeruleus (LC) in the dorsal tegmentum, mesocortical dopamine (DA) fibers from the mesencephalon, serotonin (5-HT) fibers from the raphe groups in the pons, and the basal forebrain acetylcholine (ACh) system, are among the best characterized ascending projection systems. They consist of slow-conducting, non-myelinated or poorly myelinated axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, E.D. and Zigmond, M.J. (1989): Partial injury to central noradrenergic neurons: reduction of tissue norepinephrine content is greater than reduction of extracellular norepinephrine measured by microdialysis. J. Neurosci. 9:4062–4067

    Google Scholar 

  • Adrien, J., Blanc, G., Buisseret, P., Frégnac, Y., Gary-Bobo, E., Imbert, M., Tassin, J.-P. and Trotter, Y. (1985): Noradrenaline and functional plasticity in kitten visual cortex: a re-examination. J. Physiol (Lond.) 367:73–98

    Google Scholar 

  • Akers, R.F., Lovinger, D.M., Colley, P., Linden, D. and Routtenberg, A. (1986): Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231:587–589

    Article  Google Scholar 

  • Andrade, R., Malenka, R.C. and Nicoll, R.A. (1986): A G protein couples serotonin and GABA receptors to the same channels in hippocampus. Science 234:1261–1265

    Article  Google Scholar 

  • Avissar, S., Schreiber, G., Danon, A. and Belmaker, R.Hh (1988): Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature (Lond.) 331:440–442

    Article  Google Scholar 

  • Baraban, J.M. (1987): Phorbol esters: probes of protein kinase C function in the brain. Trends Neurosci. 10:57–58

    Article  Google Scholar 

  • Bear, M.F., Carnes, K.M. and Ebner, F.F. (1985): Postnatal changes in the distribution of acetylcholinesterase in kitten visual cortex. J. Comp. Neurol. 237:519–532

    Article  Google Scholar 

  • Bear, M.F., Cooper, L.N. and Ebner, F.F. (1987): A physiological basis for a theory of synaptic modification. Science 237:42–48

    Article  Google Scholar 

  • Bear, M.F. and Daniels, J.D. (1983): The plastic response to monocular deprivation persists in kitten visual cortex after chronic depletion of norepinephrine. J. Neurosci. 3:407–416

    Google Scholar 

  • Bear, M.F., Paradiso, M.A., Schwartz, M., Nelson, S.B., Carnes, K.M. and Daniels, J.D. (1983): Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Nature (Lond.) 302:245–247

    Article  Google Scholar 

  • Bear, M.F. and Singer, W. (1986): Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature (Lond.) 320:172–176

    Article  Google Scholar 

  • Benardo, L.S. and Prince, D.A. (1982): Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res. 249:333–344

    Article  Google Scholar 

  • Benowitz, L.I. and Routtenberg, A. (1987): A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity. Trends Neurosci. 10:527–532

    Article  Google Scholar 

  • Berridge, M.J. and Irvine, R.F. (1984): Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312:315–321

    Article  Google Scholar 

  • Berridge, M.J. and Irvine, R.F. (1989): Inositol phosphates and cell signalling. Nature (Lond.) 341:197–205

    Article  Google Scholar 

  • Brown, D.A. (1983): Slow cholinergic excitation-a mechanism for increasing neuronal excitability. Trends Neurosci. 6:302–307

    Article  Google Scholar 

  • Butcher, L.L., Talbot, K. and Bilezikijan, L. (1975): Acetylcholinesterase neurons in dopamine-containing regions of the brain. J. Neurol. Trans. 37:127–153

    Article  Google Scholar 

  • Cerione, R.A., Staniszewski, C., Caron, M.G., Lefkowitz, R.J., Codina, J. and Birnbaumer, L. (1983): A role for Ni in the hormonal stimulation of adenylate cyclase. Nature (Lond.) 318:293–295

    Article  Google Scholar 

  • Constanti, A. and Sim, J.A. (1987): Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. J. Physiol. (Lond.) 387:173–194

    Google Scholar 

  • Cooper, L.N. (1987): Cortical plasticity: theoretical analysis, experimental results. In: Imprinting and Cortical Plasticity, Comparative Aspects of Sensitive Periods. Rauschecker, J.P., Marler, P.R., eds. New York: John Wiley & Son, pp 177–192

    Google Scholar 

  • Daw, N.W., Rader, R.K., Robertson, T.W. and Ariel, M. (1983): Effects of 6-hydroxydopamine on visual deprivation in kitten striate cortex. J. Neurosci. 3:907–914

    Google Scholar 

  • Daw, N.W., Robertson, T.W., Rader, R.K., Videen, T.O. and Coscia, C.J. (1984): Substantial reduction of cortical noradrenaline by lesions of adrenergic pathway does not prevent effects of monocular deprivation. J. Neurosci. 4:1354–1360

    Google Scholar 

  • Daw, N.W., Videen, T.O., Parkinson, D. and Rader, R.K. (1985a) DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) depletes noradrenaline in kitten visual cortex without altering the effects of monocular deprivation. J. Neurosci 5:1925–1933

    Google Scholar 

  • Daw, N.W., Videen, T.O., Rader, R.K., Robertson, T.W. and Coscia, C.J. (1985b): Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation. Exp. Brain Res. 59:30–35

    Article  Google Scholar 

  • Daw, N.W., Videen, T.O., Robertson, T. and Rader, R.K. (1985c): An evaluation of the hypothesis that noradrenaline affects plasticity in the developing visual cortex. In: The Visual System. Fein, A., ed. New York: Alan R. Liss, Inc. pp 133–144

    Google Scholar 

  • Daw, N.W. and Wyatt, H.J. (1976): Kittens reared in a unidirectional environment: evidence for a critical period. J. Physiol. (Lond.) 257:155–170

    Google Scholar 

  • de Lima, A.D. and Singer, W. (1986): Cholinergic innervation of cat striate cortex: a choline acetyltransferase immunocytochemical analysis. J. Comp. Neurol. 250:324–338

    Article  Google Scholar 

  • Dunwiddie, T.V., Mueller, A.L., Bickford, P.C. and Zahniser, N.R. (1983): Electrophysiological and biochemical sequelae of the destruction of hippocampal noradrenergic afferents by DSP4. Brain Res. 269:311–317

    Article  Google Scholar 

  • Dudek, S.M. and Bear, M.F. (1989): A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246:673–675

    Article  Google Scholar 

  • Eckenstein, F. and Baughman, R.W. (1984): Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature (Lond.) 309:152–155

    Article  Google Scholar 

  • Fisher, S.K. and Bartus, R.T. (1985): Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45:1085–1095

    Article  Google Scholar 

  • Fosse, V.M., Heggelund, P. and Fonnum, F. (1989): Postnatal development of glutamatergic, GABAergic, and cholinergic neurotransmitter phenotypes in the visual cortex, lateral geniculate nucleus, pulvinar, and superior colliculus in cats. J. Neurosci. 9:426–435

    Google Scholar 

  • Frégnac, Y. (1987): Cellular mechanisms of epigenesis in cat visual cortex. In: Imprinting and Cortical Plasticity. Rauschecker, J.P., Marler, P., eds. New York: John Wiley & Sons, pp 221–266

    Google Scholar 

  • Frégnac, Y. and Imbert, M. (1984): Development of neuronal selectivity in primary visual cortex of cat. Physiol. Rev. 64:325–434

    Google Scholar 

  • Fukuda, K., Higashida, H., Kubo, T., Maeda, A., Akiba, I., Bujo, H., Mishina, M. and Numa, S. (1988): Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG 108–15 cells. Nature (Lond.) 335:355–358

    Article  Google Scholar 

  • Gilman, A.G. (1984): G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  Google Scholar 

  • Gordon, B., Allen, E.E. and Trombley, P.Q. (1988): The role of norepinephrine in plasticity of visual cortex. Prog. Neurobiol. 30:171–191

    Article  Google Scholar 

  • Halliwell, J.V. and Adams, P.R. (1982): Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250:71–92

    Article  Google Scholar 

  • Harden, T.K., Wolfe, B.B., Sporn, J.R., Poulos, J.R. and Molinoff, P.B. (1977): Effects of 6-hydroxydopamine on the development of the beta adrenergic receptor/adenylate cyclase system in rat cerebral cortex. J. Pharmacol. Exp. Ther. 203:132–143

    Google Scholar 

  • Heggelund, P., Imamura, K. and Kasamatsu, T. (1987): Reduced binocularity in the noradrenaline-infused striate cortex of acutely anesthetized and paralyzed, otherwise normal cats. Exp. Brain Res. 68:593–605

    Article  Google Scholar 

  • Hirsch, H.V.B. and Tieman, S.B. (1987): Perceptual development and experience-dependent changes in cat visual cortex. In: Sensitive Periods in Development: Interdisciplinary Perspectives. Bornstein, M., ed. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp 39–79

    Google Scholar 

  • Houser, C.R., Crawford, G.D., Barber, R.P., Salvaterra, P.M. and Vaughn, J.E. (1983): Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res. 266:97–119

    Article  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1962): Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160:106–154

    Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1965): Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041–1059

    Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1970): The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419–436

    Google Scholar 

  • Imamura, K. and Kasamatsu, T. (1988): Acutely induced shift in ocular dominance during brief monocular exposure: effects of cortical noradrenaline infusion. Neurosci. Lett. 88:57–62

    Article  Google Scholar 

  • Imamura, K. and Kasamatsu, T. (1989): Interaction of noradrenergic and cholinergic systems in regulation of ocular dominance plasticity. Neurosci. Res. 6:519–536

    Article  Google Scholar 

  • Itakura, T., Kasamatsu, T. and Pettigrew, J.D. (1981): Norepinephrine-containing terminals in kitten visual cortex: laminar distribution and ultrastructure. Neurosci. 6:159–175

    Article  Google Scholar 

  • Jakobs, K.H., Aktories, K. and Schulz, G. (1979): GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn-Schmiedeberg’s Arch. Pharmacol. 310:113–119

    Article  Google Scholar 

  • Jonsson, G. (1980): Chemical neurotoxins as denervation tools in neurobiology. Ann. Rev. Neurosci. 3:169–187

    Article  Google Scholar 

  • Jonsson, G. and Kasamatsu, T. (1983): Maturation of monoamine neurotransmitters and receptors in cat occipital cortex during postnatal critical period. Exp. Brain Res. 50:449–458

    Article  Google Scholar 

  • Jonsson, G., Wiesel F.-A. and Hallman, H. (1979): Developmental plasticity of central noradrenaline neurons after neonatal damage-changes in transmitter functions. J. Neurobiol. 10:337–353

    Article  Google Scholar 

  • Kadlec, O., Somogyi, G.T., Sefema, I., Masek, K. and Vizi, E.S. (1986): Interactions between the duration of stimulation and noradrenaline on cholinergic transmission in the myenteric plexus-smooth muscle preparation. Brain Res. Bull. 16:171–178

    Article  Google Scholar 

  • Kasamatsu, T. (1979): Involvement of the β-adrenergic receptor in cortical plasticity. ARVO Abstr. Suppl. Invest. Ophthalmol. Vis. Sci. 18:135

    Google Scholar 

  • Kasamatsu, T. (1980): A possible role for cyclic nucleotides in plasticity of visual cortex. Soc. Neurosci. Abstr. 6:494

    Google Scholar 

  • Kasamatsu, T. (1982): A role of the central norepinephrine system in regulation of neuronal plasticity in cat visual cortex. In: Neurotransmitters in the Retina and the Visual Centers, Kaneko, A., Tsukahara, N., Uchizono, R., eds. Tokyo: Biomed. Res. Suppl. 3, Biomed. Res. Foundation, pp 87–93

    Google Scholar 

  • Kasamatsu, T. (1983): Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex. In: Progr. Psychobiol. Physiol. Psych., Vol. 10. New York: Academic Press, pp 1–112

    Google Scholar 

  • Kasamatsu, T. (1986a): Changes in ocular dominance of adult cats following monocular lid suture: the effect of directly infused forskolin. ARVO Abstr. Suppl. Invest. Ophthalmol. Vis. Sci. 27:153

    Google Scholar 

  • Kasamatsu, T. (1986b): A regulatory mechanism of changes in ocular dominance. In: Adaptive Processes in Visual and Oculomotor Systems. Keller, E.L., Zee, D.S., eds. Oxford: Pergamon Press, pp 71–78

    Google Scholar 

  • Kasamatsu, T. (1987): Norepinephrine hypothesis for visual cortical plasticity: thesis, antithesis, and recent development. In: Current Topics in Developmental Biology, Vol. 21. New York: Academic Press, pp 367–389

    Google Scholar 

  • Kasamatsu, T. (1989): Experimental amblyopia ex anopsia in kittens: neurophar-macological approach. In: Problems and Concepts in Developmental Neurophysiology. Kellaway, P., Noebels, J.L., eds. Baltimore: The Johns Hopkins Univ. Press, pp 75–91

    Google Scholar 

  • Kasamatsu, T. and Heggelund, P. (1982): Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline. Exp. Brain Res. 45:317–327

    Article  Google Scholar 

  • Kasamatsu, T., Itakura, T. and Jonsson, G. (1981a): Intracortical spread of exogenous catecholamines: effective concentration for modifying cortical plasticity. J. Pharmacol. Exp. Ther. 217:841–850

    Google Scholar 

  • Kasamatsu, T., Itakura, T., Jonsson, G., Heggelund, P., Pettigrew, J.D., Nakai, K., Watabe, K., Kuppermann, B.D. and Ary, M. (1984): Neuronal plasticity in cat visual cortex: a proposed role for the central noradrenaline system. In: Monoamine Innervation of Cerebral Cortex. Descarries, L., Reader, T., Jasper, H.H., eds. New York: Alan R. Liss, Inc., pp 301–319

    Google Scholar 

  • Kasamatsu, T., Ohashi, T. and Inamura, K. (1989a): Integration of adrenergic and cholinergic regulation in ocular dominance plasticity. Biomed. Res. 10 Suppl. 2:43–53.

    Google Scholar 

  • Kasamatsu, T., Ohashi, T. and Inamura, K. (1989a): The Proceedings of the 14th Seiriken Conference on “The Neural Basis of Cortical Plasticity.”

    Google Scholar 

  • Kasamatsu, T. and Pettigrew, J.D. (1976): Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194:206–209

    Article  Google Scholar 

  • Kasamatsu, T. and Pettigrew, J.D. (1979): Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxy-dopamine. J. Comp. Neurol. 185:139–162

    Article  Google Scholar 

  • Kasamatsu, T., Pettigrew, J.D., and Ary, M. (1979): Restoration of visual cortical plasticity by local microperfusion of norepinephrince. J. Comp. Neurol. 185:163–182

    Article  Google Scholar 

  • Kasamatsu, T., Pettigrew, J.D. and Ary, M., (1981b): Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine. J. Neurophysiol. 45:254–266

    Google Scholar 

  • Kasamatsu, T. and Shirokawa, T. (1985): Involvement of ß adrenoceptors in the shift of ocular dominance after monocular deprivation. Exp. Brain Res. 59:507–514

    Article  Google Scholar 

  • Kasamatsu, T. and Shirokawa, T. (1988): Norepinephrine-dependent neuronal plasticity in kitten visual cortex. In: Cellular Mechanisms of Conditioning and Behavioral Plasticity. Woody, C.D., Alkon, D.L., McGaugh, J.L., eds. New York, Plenum, pp 437–444

    Google Scholar 

  • Kasamatsu, T., Watabe, K., Heggelund, P. and Schöller, E. (1985): Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus. Neurosci. Res. 2:365–386

    Article  Google Scholar 

  • Katada, T., Gilman, A.G., Watanabe, Y., Bauer, S. and Jakobs, K.H. (1985): Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151:431–437

    Article  Google Scholar 

  • Kimura, H., McGeer, P.L., Peng, J.H and McGeer, E.G. (1981): The central cholinergic system, studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol. 200:151–201

    Article  Google Scholar 

  • Kostrzewa, R.M. and Jacobowitz, D.M. (1974): Pharmacological actions of 6-hydroxydopamine. Pharmac. Rev. 26:199–288

    Google Scholar 

  • Krnjević, K. (1974): Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–540

    Google Scholar 

  • Krnjević, K. and Phillis, J.W. (1963): Acetylcholine sensitive cells in the cerebral cortex. J. Physiol. (Lond.) 166:296–327

    Google Scholar 

  • Krnjević, K., Pumain, R. and Renaud, L. (1971): The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.) 215:247–268

    Google Scholar 

  • Krnjević, K. and Ropert, N. (1982): Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum. Neurosci. 7:2165–2183

    Article  Google Scholar 

  • Lundberg, J.M., Hedlund, B. and Bartfai, T. (1982): Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature (Lond.) 295:147–149

    Article  Google Scholar 

  • Madison, D.V. and Nicoll, R.A. (1986): Actions of noradrenaline recorded intra-cellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J. Physiol. (Lond.) 372:221–244

    Google Scholar 

  • Magistretti, P.J. and Schorderet, M. (1984): VIP and noradrenaline act synergistic-ally to increase cyclic AMP in cerebral cortex. Nature (Lond.) 308:280–282

    Article  Google Scholar 

  • Malenka, R.C., Madison, D.V., Andrade, R. and Nicoll, R.A. (1986): Phorbol esters minic some cholinergic actions in hippocampal pryamidal neurons. J. Neurosci. 6:475–480

    Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1985): Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc. Natl. Acad. Sci. USA 82:6344–6348

    Article  Google Scholar 

  • McCormick, D.A. and Prince, D.A. (1986): Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J. Physiol. (Lond.) 375:169–194

    Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H. (1983): Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214:170–197

    Article  Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R.W. (1988): The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J. Neurophysiol. 59:1231–1252

    Google Scholar 

  • Meyer, E.M. and Otero, D.H. (1985): Pharmacological and ionic characterizations of the muscarinic receptors modulating [3H] acetylcholine release from rat cortical synaptosomes. J. Neurosci. 5:1202–1207

    Google Scholar 

  • Movshon, J.A. and Van Sluyters, R.C. (1981): Visual neural development. Ann. Rev. Psychol. 32:477–522

    Article  Google Scholar 

  • Nakai, K. (1987): Regenerative catecholamine-containing terminals in kitten visual cortex: an ultrastructural study. Neurosci. Res. 4:475–485

    Article  Google Scholar 

  • Nakai, K., Jonsson, G. and Kasamatsu, T. (1987): Norepinephrinergic reinnervation of cat occipital cortex following localized lesions with 6-hydroxydopamine. Neurosci. Res. 4:433–453

    Article  Google Scholar 

  • Nelson, S.B., Schwartz, M.A. and Daniels, J.D. (1985): Clonidine and cortical plasticity: possible evidence for noradrenergic involvement. Dev. Brain Res. 23:39–50

    Article  Google Scholar 

  • Nicoll, R.A. (1988): The coupling of neurotransmitter receptors to ion channels in the brain. Science 214:545–551

    Article  Google Scholar 

  • Nishizuka, Y. (1986): Studies and perspectives of protein kinase C. Science 233:305–312

    Article  Google Scholar 

  • Nishizuka, Y. (1988): The molecular heterogeneity of protein kinase C and its possibilities for cellular regulation. Nature (Lond.) 334:661–665

    Article  Google Scholar 

  • Ohashi, T. and Kasamatsu, T. (1989): Concentration-dependent suppression by lithium of effects on monocular deprivation in kittens. Soc Neurosci. Abstr. 15:795

    Google Scholar 

  • Ohashi, T., Imamura, K. and Kasamatsu, T. (1988): Lithium reduces effects of monocular deprivation. Soc. Neurosci. Abstr. 14:189

    Google Scholar 

  • Olson, C.R. and Freeman, R.D. (1980): Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 39:17–21

    Google Scholar 

  • Paradiso, M.S., Bear, M.F. and Daniels, J.D. (1983): Effects of intracortical infusion of 6-hydroxydopamine on the response of kitten visual cortex to monocular deprivation. Exp. Brain Res. 51:413–422

    Article  Google Scholar 

  • Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J. and Capon, D.J. (1988): Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature (Lond.) 334:434–437

    Article  Google Scholar 

  • Pettigrew, J.D. and Kasamatsu, T. (1978): Local perfusion of noradrenaline maintains visual cortical plasticity. Nature (Lond.) 271:761–763

    Article  Google Scholar 

  • Potempska, A., Skangiel-Kramska, J. and Kossut, M. (1979): Development of cholinergic enzymes and adenosine-triphosphate activity of optic system of cats in normal and restricted visual input conditions. Dev. Neurosci. 2:38–45

    Article  Google Scholar 

  • Rauschecker, J.P. (1987): What signals are responsible for synaptic changes in visual cortical plasticity. In: Imprinting and Cortical Plasticity, Comparative Aspects of Sensitive Periods. Rauschecker, J.P., Maler, P., eds. New York: John Wiley & Sons, pp 193–220

    Google Scholar 

  • Reader, T.A., De Champlain, J. and Jasper, H.H. (1976): Catecholamines released from cerebral cortex in the cat: decrease during sensory stimulation. Brain Res. 111:95–108

    Article  Google Scholar 

  • Rinaldi, F. and Himwich, H. (1955): Alerting responses and actions of atropine and cholinergic drugs. Arch. Neurol. Psychiatr. 73:387–395

    Article  Google Scholar 

  • Robertson, R.T., Ambe, R.K. and Yu, J. (1989): Intraocular injections of tetrodo-toxin reduce transiently expressed acetylcholinesterase activity in developing rat visual cortex. Dev. Brain Res. 46:69–84

    Article  Google Scholar 

  • Rosenberger, L.B., Yamamura, H.I. and Roeske, W.R. (1980): The regulation of cardiac muscarinic cholinergic receptors by isoproterenol. Eur. J. Pharmacol 65:129–130

    Article  Google Scholar 

  • Saito, N., Kikkawa, U., Nishizuka, Y. and Tanaka, C. (1988): Distribution of protein kinase C-like immunoreactive neurons in rat brain. J. Neurosci. 8:369–382

    Google Scholar 

  • Sasaki, K. and Sato, M. (1987): A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine, and acetylcholine receptors. Nature (Lond.) 325:259–262

    Article  Google Scholar 

  • Sato, H., Hata, Y., Hagihara, K. and Tsumoto, T. (1987a): Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol. 58:781–794

    Google Scholar 

  • Sato, H., Hata, Y., Masui, H. and Tsumoto, T. (1987b): A functional role of cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 58:765–780

    Google Scholar 

  • Shaw, C., Wilkinson, W., Cynader, M., Needier, M.C., Aoki, C. and Hall, S.E. (1986): The laminar distributions and postnatal development of neurotransmitter and neuromodulator receptors in cat visual cortex. Brain Res. Bull. 16:661–671

    Article  Google Scholar 

  • Shaw, C., Needier, M.C. and Cynader, M. (1984): Ontogenesis of muscarinic acetylcholine binding sites in cat visual cortex: reversal of specific laminar distribution during the critical period. Dev. Brain Res. 14:295–299

    Article  Google Scholar 

  • Sherman, S.M. and Spear, P.D. (1982): Organization of visual pathways in normal and visually deprived cats. Psychol. Rev. 62:738–855

    Google Scholar 

  • Sheu, F.-S., Kasamatsu, T. and Routtenberg, A. (1990): Protein kinase C activity and substrate (FI/GAP-43) phosphorylation in developing cat visual cortex. Brain Res. 524:144–148

    Article  Google Scholar 

  • Shirokawa, T. and Kasamatsu, T. (1986): Concentration-dependent suppression by β-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex. Neurosci. 18:1035–1046

    Article  Google Scholar 

  • Shirokawa, T. and Kasamatsu, T. (1987): Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex. Exp. Brain Res. 68:466–476

    Article  Google Scholar 

  • Shute, C.C.D. and Lewis, P.R. (1967): The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    Article  Google Scholar 

  • Sibley, D.R. and Lefkowitz, R.J. (1985): Molecular mechanisms of receptor desensitization using the B-adrenergic receptor-coupled adenylate cyclase system as a model. Nature (Lond.) 317:124–129

    Article  Google Scholar 

  • Sillito, A.M. and Kemp, J.A. (1983): Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res. 289:143–155

    Article  Google Scholar 

  • Sims, S.M., Singer, J.J. and Walsh, Jr. J.V. (1988): Antagonistic adrenergic- muscarinic regulation of M current in smooth muscle cells. Science 239:190–193

    Article  Google Scholar 

  • Singer, W. (1979): Central-core control of visual-cortex functions. In: The Neuroscience, Fourth Study Program. Schmitt, F.O., Worden, F.G., eds. Cambridge, MA: MIT Press, pp 1093–1109

    Google Scholar 

  • Singer, W. (1982): Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Exp. Brain Res. 47:209–222

    Google Scholar 

  • Singer, W. (1984): Learning to see: mechanisms in experience-dependent development. In: The Biology of Learning. Marler, P.R., Terrace, H.S., eds. Dahlem Konferenzen, Berlin, New York: Springer-Verlag, pp 461–477

    Chapter  Google Scholar 

  • Singer, W., von Gruenau, M. and Rauschecker, J. (1979a): Requirements for the disruption of binocularity in the visual cortex of strabismic kittens. Brain Res. 171:536–540

    Article  Google Scholar 

  • Singer, W. and Rauschecker, J.P. (1982): Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Exp. Brain Res. 47:223–233

    Google Scholar 

  • Singer, W., Tretter, F. and Cynader, M. (1976): The effect of reticular stimulation in spontaneous and evoked activity in the cat visual cortex. Brain Res. 102:71–90

    Article  Google Scholar 

  • Singer, W., Yinon, U. and Tretter, F. (1979b): Inverted monocular vision prevents ocular dominance shift in kittens and impairs the functional state of visual cortex in adult cats. Brain Res. 164:294–299

    Article  Google Scholar 

  • Spehlmann, R. (1963): Acetylcholine and prostigmine electrophoresis at visual cortex neurons. J. Neurophysiol. 26:127–139

    Google Scholar 

  • Stichel, C.C. and Singer, W. (1987a): Quantitative analysis of the choline acetyl-transferase-immunoreactive axonal network in the cat primary visual cortex: I. Adult cats. J. Comp. Neurol. 258:91–98

    Article  Google Scholar 

  • Stichel, C.C. and Singer, W. (1987b): Quantitative analysis of the choline acetyl-transferase-immunoreactive axonal network in the cat primary visual cortex: II. Pre- and postnatal development. J. Comp. Neurol. 258:99–111

    Article  Google Scholar 

  • Stricker, E.M. and Zigmond, M.J. (1986): Brain monoamines, homeostasis and adaptive behavior. In: Handbook of PhysiologyThe Nervous System IV. Mountcastle, V.B., Bloom, F.E., Geiger, S.R., eds. Bethesda: Am. Physiol. Soc., pp 677–700

    Google Scholar 

  • Stryker, M.P. (1989): Evidence for a possible role of spontaneous electrical activity in the development of the mammalian visual cortex. In: Problems and Concepts in Developmental Neurophysiology. Kellaway, P., Noebels, J.L., eds. Baltimore: The Johns Hopkins Univ. Press, pp 110–130

    Google Scholar 

  • Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P. and Anderson, W.B. (1985): Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature (Lond.) 314:359–361

    Article  Google Scholar 

  • Szerb, J.C. (1967): Cortical acetylcholine release and electroencephalic arousal. J. Physiol. (Lond.) 192:329–343

    Google Scholar 

  • Takai, Y., Kikkawa, U., Kaibuchi, K. and Nishizuka, Y. (1984): Membrane phospholipid metabolism and signal transduction for protein phosphorylation. Adv. Cyclic Neucleotide Res. 18:119–154

    Google Scholar 

  • Trombley, P., Allen, E.E., Soyke, J., Blaha, C.D., Lane, R.F. and Gordon, B. (1986): Doses of 6-hydroxydopamine sufficient to deplete norepinephrine are not sufficient to decrease plasticity in the visual cortex. J. Newrosci. 6:266–273

    Google Scholar 

  • Videen, T.O., Daw, N.W. and Rader, R.K. (1984): The effect of norepinephrine on visual cortical neurons in kitten and adult cats. J. Newrosci. 4:1607–1617

    Google Scholar 

  • Wahle, P. and Meyer, G. (1989): Early postnatal development of vasoactive intestine polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex. J. Comp. Neurol. 282:215–248

    Article  Google Scholar 

  • Watanabe, A.M., McConnaughey, M.M., Strawbridge, R.A., Fleming, J.W., Jones, L.R. and Besch, Jr. H.R. (1978): Muscarinic cholinergic receptor modulation of B-adrenergic receptor affinity for catecholamines. J. Biol. Chem. 253:4833–4836

    Google Scholar 

  • Westfall, T.C. (1974): Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacol. 13: 693–700

    Article  Google Scholar 

  • Wiesel, T.N. (1982): Postnatal development of the visual cortex and the influence of environment. Nature (Lond.) 299:583–591

    Article  Google Scholar 

  • Wiesel, T.N. and Hubel, D.H. (1963): Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–1017

    Google Scholar 

  • Woody, C.D., Swartz, B.E. and Gruen, E. (1978): Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158:373–395

    Article  Google Scholar 

  • Worley, P.F., Baraban, J.M. and Snyder, S.H. (1986): Heterogeneous localization of protein kinase C in rat brain: autoradiographic analysis of phorbol ester receptor binding. J. Newrosci. 6:199–207

    Google Scholar 

  • Yamamoto, C. and Kawai, N. (1967): Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro. Exp. Neurol. 19:176–187

    Article  Google Scholar 

  • Zahs, K.R. (1989): Influences of neural activity on the development and plasticity of the cat’s visual cortex. In: The Assembly of the Nervous System. Liss, A.R., ed. New York, pp 259–278

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kasamatsu, T., Imamura, K. (1991). Ocular Dominance Plasticity in Kitten Visual Cortex: Integration of Noradrenergic and Cholinergic Regulation. In: Richardson, R.T. (eds) Activation to Acquisition. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0556-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0556-9_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-0558-3

  • Online ISBN: 978-1-4684-0556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics