Skip to main content

Sums of Independent Random Variables

  • Chapter
Book cover Probability Theory

Part of the book series: Springer Texts in Statistics ((STS))

  • 789 Accesses

Abstract

Of paramount concern in probability theory is the behavior of sums {S n , n ≥ 1} of independent random variables {X i, i ≥ 1}. The case where the {X i} are i.i.d. is of especial interest and frequently lends itself to more incisive results. The sequence of sums {S n, n ≥ 1} of i.i.d. r.v.s {X n} is alluded to as a random walk; in the particular case when the component r.v.s {X n} are nonnegative, the random walk is referred to as a renewal process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. H. Abbott and Y. S. Chow, “Some necessary conditions for a.s. convergence of sums of independent r.v.s.,” Bull. Institute Math. Academia Sinica 1 (1973), 1–7.

    MathSciNet  MATH  Google Scholar 

  • L. E. Baum and M. Katz, “Convergence rates in the law of large numbers,” Trans. Amer. Math. Soc. 120 (1965), 108–123.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Brown, “Moments of a stopping rule related to the central limit theorem,” Ann. Math. Stat. 40 (1969), 1236–1249.

    Article  MATH  Google Scholar 

  • D. L. Burkholder, “Independent sequences with the Stein property,” Ann. Math. Stat. 39(1968), 1282–1288.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. S. Chow, “Local convergence of martingales and the law of large numbers,” Ann. Math. Stat. 36 (1965), 552–558.

    Article  MATH  Google Scholar 

  • Y. S. Chow, “Delayed sums and Borel summability of independent, identically distributed random variables,” Bull. Inst. Math., ACADEMIA SINICA 1 (1973), 207–220.

    MATH  Google Scholar 

  • Y. S. Chow and H. Robbins, “On the asymptotic theory of fixed-width sequential confidence intervals for the mean.” Ann. Math. Stat. 36 (1965), 457–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. S. Chow and H. Teicher, “Almost certain summability of i.i.d. random variables,” Ann. Math. Stat. 42 (1971), 401–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. S. Chow, H. Robbins, and D. Siegmund, Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin, Boston, 1972.

    Google Scholar 

  • Y. S. Chow, H. Robbins, and H. Teicher, “Moments of randomly stopped sums,” Ann. Math. Stat. 36 (1965), 789–799.

    Article  MathSciNet  MATH  Google Scholar 

  • K. L. Chung, “Note on some strong laws of large numbers,” Amer. Jour. Math. 69 (1947). 189–192.

    Article  MATH  Google Scholar 

  • K. L. Chung, A Course in Probability Theory. Harcourt Brace, New York, 1968; 2nd ed., Academic Press, New York, 1974.

    Google Scholar 

  • K. L. Chung and W. H. J. Fuchs, “On the distribution of values of sums of random variables,” Mem. Amer. Math. Soe. 6 (1951).

    Google Scholar 

  • K. L. Chung and D. Ornstein, “On the recurrence of sums of random variables,” Bull. Amer. Math. Soe. 68 (1962), 30–32.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Derman and H. Robbins, “The SLLN when the first moment does not exist,” Proe. Nat. Acad. Sei. U.S.A. 41 (1955), 586–587.

    Article  MathSciNet  MATH  Google Scholar 

  • J. L. Doob, Stochastic Processes, Wiley, New York, 1953.

    MATH  Google Scholar 

  • K. B. Erickson, “The SLLN when the mean is undefined,” Trans. Amer. Math. Soc. 185 (1973), 371–381.

    Article  MathSciNet  Google Scholar 

  • W. Feller, “Über das Gesetz der grossen Zahlen,” Acta Univ. Szeged., Sect. Sei. Math. 8 (1937), 191–201.

    MATH  Google Scholar 

  • W. Feller, “A limit theorem for random variables with infinite moments,” Amer. Jour. Math. 68 (1946), 257–262.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Feller, An Introduction to Probability Theory and its applications, Vol. 2, Wiley, New York, 1966.

    MATH  Google Scholar 

  • R. Gundy and D. Siegmund, “On a stopping rule and the central limit theorem,” Ann. Math. Stat. 38 (1967), 1915–1917.

    Article  MathSciNet  MATH  Google Scholar 

  • C. C. Heyde, “Some renewal theorems with applications to a first passage problem,” Ann. Math. Stat. 37 (1966), 699–710.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York, 1972.

    MATH  Google Scholar 

  • H. Kesten, “The limit points of a random walk,” Ann. Math. Stat. 41 (1970), 1173–1205.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Khintchine and A. Kolmogorov, “Über Konvergenz von Reichen, derem Glieder durch den Zufall bestimmt werden,” Ree. Math. (Mat. Sbornik) 32 (1924), 668–677.

    Google Scholar 

  • A. Kolmogorov, “Über die Summen durch den Zufall bestimmer unabhängiger Grössen,” Math. Ann. 99 (1928), 309–319; 102 (1930), 484–488.

    Article  MathSciNet  Google Scholar 

  • M. J. Klass, “Properties of optimal extended-valued stopping rules,” Ann. Prob. 1 (1973), 719–757.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Klass and H. Teicher, “Iterated logarithm laws for random variables barely with or without finite mean,” Ann. Prob. 5 (1977), 861–874.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Knopp, Theory and Application of Infinite Series, Stechert-Hafner, New York, 1928.

    MATH  Google Scholar 

  • P. Lévy, Theorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937; 2nd ed., 1954.

    Google Scholar 

  • M. Loève, “On almost sure convergence,” Proc. Second Berkeley Symp. Math. Stat. Prob., pp. 279–303, Univ. of California Press, 1951.

    Google Scholar 

  • M. Loève, Probability Theory, 3rd ed., Van Nostrand, Princeton, 1963; 4th ed., SpringerVerlag, Berlin and New York, 1977–1978.

    MATH  Google Scholar 

  • J. Marcinkiewicz and A. Zygmund, “Sur les fonctions indépendantes,” Fund. Math. 29(1937), 60–90.

    Google Scholar 

  • P. Revesz, The Laws of Large Numbers, Academic Press, New York, 1968.

    MATH  Google Scholar 

  • H. Robbins and E. Samuel, “An extension of a lemma of Wald,” J. Appl. Prob. 3 (1966), 272–273.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Spitzer, “A combinatorial lemma and its applications to probability theory,” Trans. Amer. Math. Soc. 82 (1956), 323–339.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Teicher, “Almost certain convergence in double arrays,” Z. Wahr. verw. Gebiete 69 (1985), 331–345.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Wald, “On cumulative sums of random variables,” Ann. Math. Stat. 15 (1944), 283–296.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Chow, Y.S., Teicher, H. (1988). Sums of Independent Random Variables. In: Probability Theory. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0504-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0504-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0506-4

  • Online ISBN: 978-1-4684-0504-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics