Integration in a Probability Space

  • Yuan Shih Chow
  • Henry Teicher
Part of the Springer Texts in Statistics book series (STS)


There are two basic avenues to integration. In the modern approach the integral is introduced first for simple functions—as a weighted average of the values of the function-and then defined for any nonnegative measurable function f as a limit of the integrals of simple nonnegative functions increasing to f Conceptually this is extremely simple, but a certain price is paid in terms of proofs. The alternative classical approach, while employing a less intuitive definition, achieves considerable simplicity in proofs of elementary properties.


Random Walk Probability Space Simple Random Walk Monotone Convergence Theorem Markov Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. S. Chow and W. J. Studden, “Monotonicity of the variance under truncation and variations of 1ensen’s inequality,” Ann. Math. Stat. 40 (1969),1106–1108.MathSciNetzbMATHCrossRefGoogle Scholar
  2. K. L. Chung and W. H. J. Fuchs, “On the distribution of values of sums of random variables,” Mem. Amer. Soc. 6 (1951).Google Scholar
  3. J. L. Doob, Stochastic Processes, Wiley, New York, 1953.zbMATHGoogle Scholar
  4. P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950; Springer-Verlag, Berlin and New York, 1974.Google Scholar
  5. P. Hall, “On the f£ p convergence of random variables,” Proc. Cambridge Philos. Soc. 82 (1977). 439–446.zbMATHCrossRefGoogle Scholar
  6. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, London, 1934.Google Scholar
  7. S. B. Kochen and C. J. Stone, “A note on the Borel-Cantelli lemma,” III. Jour. Math. 8 (1964), 248–251.MathSciNetzbMATHGoogle Scholar
  8. A. Liapounov, “Nouvelle forme du theoreme sur la limite de probabilite,” Mem. Acad. Sc. St. Petersbourg 12 (1905), No.5.Google Scholar
  9. M. Loeve, Prohability Theory, 3rd ed., Van Nostrand, Princeton, 1963; 4th ed., SpringerVerlag, Berlin and New York, 1977–1978.Google Scholar
  10. G. Polya, “Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz,” Math. Ann. 84 (1921),149–160.MathSciNetzbMATHCrossRefGoogle Scholar
  11. S. Saks, Theory a/the Integral (L. C. Young, translation), Stechert-Hafner, New York, 1937.Google Scholar
  12. H. Teicher, “On the law of the iterated logarithm,” Ann. Prob. 2 (1974),714–728.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Yuan Shih Chow
    • 1
  • Henry Teicher
    • 2
  1. 1.Department of Mathematical StatisticsColumbia UniversityNew YorkUSA
  2. 2.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations