Skip to main content

Abstract

Gestation in the human and in animals is associated with profound anatomical, physiological, and metabolic adaptation in the mother in order to support the needs of the growing conceptus. Although glucose is the primary source of energy for the fetus, protein accretion is an essential component for fetal growth and the synthesis of new fetal and maternal tissue. Study of protein and nitrogen metabolism has interested a number of investigators over the years. Using contemporary methods, investigators have attempted to examine alterations in protein metabolism throughout mammalian pregnancy, their efforts often leading to conflicting results. In this chapter we have attempted to discuss these data with particular focus on human pregnancy. Wherever important, conflicting results and methodological problems, as they relate to quantification of protein metabolism, have been emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hytten FE, Leitch I. The gross composition of the components of weight gain. In: The Physiology of Human Pregnancy, 2nd ed. London: Blackwell Scientific Publications, 1971;371–387.

    Google Scholar 

  2. Calloway DH. Nitrogen balance during pregnancy. In Winick M, ed: Nutrition and Fetal Development, Vol. 2, New York: Wiley, 1972;79–94.

    Google Scholar 

  3. King JC. Protein metabolism during pregnancy. Clin Perinatol 1975;2:243–254.

    PubMed  CAS  Google Scholar 

  4. King JC, Calloway DH, Morgen S. Nitrogen retention, total body 40K and weight gain in teenage pregnant girls. J Nutr 1973;103:772–785.

    PubMed  CAS  Google Scholar 

  5. Fee BA, Weil WB Jr. Body composition of infants of diabetic mothers by direct analysis. Ann NY Acad Sci 1963; 110:869–897.

    Article  PubMed  CAS  Google Scholar 

  6. Forbes GB. Pregnancy. In: Human Body Composition. New York: Springer-Verlag, 1987; 196–208.

    Chapter  Google Scholar 

  7. Pipe NGJ, Smith T, Halliday D, et al. Changes in fat, fat-free mass and body water in human normal pregnancy. Br J Obstet Gynaecol 1979;86:929–940.

    Article  PubMed  CAS  Google Scholar 

  8. Felig P, Kim YJ, Lunch V, et al. Amino acid metabolism during starvation in human pregnancy. J Clin Invest 1972;51:1195–1201.

    Article  PubMed  CAS  Google Scholar 

  9. Cox BD, Calame DP. Changes in plasma amino acid levels during the human menstrual cycle and in early pregnancy: a preliminary report. Horm Metab Res 1978; 10:428–433.

    Article  PubMed  CAS  Google Scholar 

  10. Metzger BE, Unger RH, Frienkel N. Carbohydrate metabolism in pregnancy. XIV. Relationships between circulating glucagon, insulin, glucose and amino acids in response to a “mixed meal” in late pregnancy. Metabolism 1977;26:151–156.

    Article  PubMed  CAS  Google Scholar 

  11. Christensen PJ, Date JW, Schonheyder F, et al. Amino acids in blood plasma and urine during pregnancy. Scand J Clin Lab Invest 1957;9:54–61.

    Article  PubMed  CAS  Google Scholar 

  12. Schoengold DM, DeFiore RH, Parlett RC. Free amino acids in plasma throughout pregnancy. Am J Obstet Gynecol 1978;131:490–499.

    PubMed  CAS  Google Scholar 

  13. Kalhan SC, Tserng K-Y, Gilfillan C, et al. Metabolism of urea and glucose in normal and diabetic pregnancy. Metabolism 1982;31:824–833.

    Article  PubMed  CAS  Google Scholar 

  14. Lindblad BS, Baldesten A. The normal venous plasma free amino acid levels of non-pregnant women and of mother and child during delivery. Acta Paediatr Scand 1967;56:37–48.

    Article  CAS  Google Scholar 

  15. Gard PR, Handley SL. Human plasma amino acid changes at parturition. Horm Metab Res 1985;17:112.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr GR. The free amino acids of serum during development of Macaca mulatta. II. During pregnancy and fetal life. Pediatr Res 1968;2:493–500.

    PubMed  CAS  Google Scholar 

  17. Pastor-Anglada M, Remesar X. Development of the gestational plasma hypoaminoacidemia in the rat. Comp Biochem Physiol 1986;85A:735–738.

    Article  CAS  Google Scholar 

  18. Landau RL, Lugibihl K. The effect of progesterone on the concentration of plasma amino acids in man. Metabolism 1967;16:1114–1122.

    Article  PubMed  CAS  Google Scholar 

  19. Handwerger S, Fellows RE, Crenshaw MC, et al. Ovine placental lactogen: acute effects on intermediary metabolism in pregnant and non-pregnant sheep. J Endocrinol 1976;69:133–137.

    Article  PubMed  CAS  Google Scholar 

  20. Pastor-Anglada M, Lopez-Tejero D, Remesar X. Free amino acid pools in some tissues of the pregnant rat. Horm Metab Res 1986;18:590–594.

    Article  PubMed  CAS  Google Scholar 

  21. Metzger BE, Hare JW, Freinkel N. Carbohydrate metabolism in pregnancy. IX. Plasma levels of gluconeogenic fuels during fasting in the rat. J Clin Endocrinol Metab 1971;33:869–872.

    Article  PubMed  CAS  Google Scholar 

  22. Freinkel N, Metzger BE, Nitzan M, et al. “Accelerated starvation” and mechanisms for the conservation of maternal nitrogen during pregnancy. Isr J Med Sci 1972; 8:426–439.

    PubMed  CAS  Google Scholar 

  23. Phelps RL, Metzger BE, Freinkel N. Carbohydrate metabolism in pregnancy. XVII. Diurnal profiles of plasma glucose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am J Obstet Gynecol 1981; 140:730–736.

    PubMed  CAS  Google Scholar 

  24. Fitch WL, King JC. Plasma amino acid, glucose, and insulin responses to moderate-protein and high-protein test meals in pregnant, nonpregnant, and gestational diabetic women. Am J Clin Nutr 1987;46: 243–249.

    PubMed  CAS  Google Scholar 

  25. Metzger BE, Phelps RL, Freinkel N, et al. Effects of gestational diabetes on diurnal profiles of plasma glucose, lipids, and individual amino acids. Diabetes Care 1980;3:402–409.

    PubMed  CAS  Google Scholar 

  26. Kalkhoff RK, Kandaraki E, Morrow PG, et al. Relationship between neonatal birth weight and maternal plasma amino acid profiles in lean and obese nondia-betic women and in type I diabetic pregnant women. Metabolism 1988;37:234–239.

    Article  PubMed  CAS  Google Scholar 

  27. McClain PE, Metcoff J, Crosby WM, et al. Relationship of maternal amino acid profiles at 25 weeks of gestation to fetal growth. Am J Clin Nutr 1978;31:401–407.

    PubMed  CAS  Google Scholar 

  28. Moghissi KS, Churchill JA, Kurrie D. Relationship of maternal amino acids and proteins to fetal growth and mental development. Am J Obstet Gynecol 1975; 15: 398–410.

    Google Scholar 

  29. Beaton GH. Urea formation in the pregnant rat. Arch Biochem Biophys 1957;67:1–9.

    Article  PubMed  CAS  Google Scholar 

  30. Metzger BE, Angoli FS, Hare JW, et al. Carbohydrate metabolism in pregnancy. X. Metabolic disposition of alanine by the perfused liver of the fasting pregnant rat. Diabetes 1973;22:601–612.

    PubMed  CAS  Google Scholar 

  31. Metzger BE, Angoli FS, Freinkel N. Effect of sex and pregnancy on formation of urea and ammonia during gluconeogenesis in the perfused rat liver. Horm Metab Res 1970;2:367–368.

    Article  PubMed  CAS  Google Scholar 

  32. Nitzan M, Kippler-Orbach J. Effects of pregnancy on the development of acute uremic syndrome in the rat. Isr J Med Sci 1976;12:129–133.

    PubMed  CAS  Google Scholar 

  33. Herrera E, Knopp RH, Freinkel N. Carbohydrate metabolism in pregnancy. VI. Plasma fuels, insulin, liver composition, gluconeogenesis and nitrogen metabolism during late gestation in the fed and fasted rat. J Clin Invest 1969;48:2260–2272.

    Article  PubMed  CAS  Google Scholar 

  34. McGarrity WJ, McHenry HB, Van Wyck HB, et al. An effect of pyridoxine on blood urea in human subjects. J Biol Chem 1949;178:511–516.

    Google Scholar 

  35. Felig P. Maternal and fetal fuel homeostasis in human pregnancy. Am J Clin Nutr 1973;26:998–1005.

    PubMed  CAS  Google Scholar 

  36. Galim EB, Hruska K, Bier DM, et al. Branched-chain amino acid nitrogen transfer to alanine in vivo in dogs. J Clin Invest 1980;66:1295–1304.

    Article  PubMed  CAS  Google Scholar 

  37. Haymond MW, Miles JM. Branched chain amino acids as a major sources of alanine nitrogen in man. Diabetes 1982;31:86–89.

    Article  PubMed  CAS  Google Scholar 

  38. Felig P, Pozefsky T, Marliss E, et al. Alanine: key role in gluconeogenesis. Science 1970; 167:1003–1004.

    Article  PubMed  CAS  Google Scholar 

  39. Felig P. Progress in endocrinology and metabolism: the glucose-alanine cycle. Metabolism 1973;22:179–207.

    Article  PubMed  CAS  Google Scholar 

  40. Kalhan SC, Gilfillan CA, Tserng K-Y, et al. Glucose-alanine relationship in normal human pregnancy. Metabolism 1988;37:152–158.

    Article  PubMed  CAS  Google Scholar 

  41. Kalhan S, Hertz R, Rossi K, et al. Glucose-alanine relationship in diabetic pregnancy. Metabolism 1991 (in press).

    Google Scholar 

  42. Pastor-Anglada M, Champigny O, Ferre P, et al. Alanine turnover rate and its hepatic metabolism are increased in midpregnant rat. Biol Neonate 1988;54: 126–132.

    Article  PubMed  CAS  Google Scholar 

  43. Pastor-Anglada M, Remesar X, Bourdel G. Alanine uptake by liver at midpregnancy in rats. Am J Physiol 1987;252:E408-E413.

    PubMed  CAS  Google Scholar 

  44. Felipe A, Remesar X, Pastor-Anglada M. Na+-depen-dent alanine transport in plasma membrane vesicles from late-pregnant rat livers. Pediatr Res 1989;26: 448–451.

    Article  PubMed  CAS  Google Scholar 

  45. Casado J, Remesar X, Pastor-Anglada M. Hepatic uptake of amino acids in late-pregnant rats. Biochem J 1987;248:117–122.

    PubMed  CAS  Google Scholar 

  46. Cuezva JM, Valcarce C, Chamorro M, et al. Alanine and lactate as gluconeogenic substrates during late gestation. Fed Eur Biochem Soc 1986;194:219–223.

    Article  CAS  Google Scholar 

  47. Pastor-Anglada M. Letter to the editor. Metabolism 1989;38:290.

    Article  PubMed  CAS  Google Scholar 

  48. Kalhan SC. Letter to the editor. Metabolism 1989;38: 290–291.

    Article  Google Scholar 

  49. Palou A, Remesar X, Arola L, et al. Glucose-alanine relationships during rat pregnancy and lactation. Mol Physiol 1981;1:301–309.

    CAS  Google Scholar 

  50. Garlick PJ. Protein turnover in the whole animal and specific tissues. In Florkin M, Stotz EH, eds: Comprehensive Biochemistry-Protein Metabolism, Part I, Vol. 19B. Amsterdam: Elsevier, 1980;77–152.

    Google Scholar 

  51. Reeds PJ, James WPT. Nutrition: the changing scene; protein turnover. Lancet 1983;March 12:571–574.

    Google Scholar 

  52. Young VR, Steffee WP, Pencharz PB, et al. Total human body protein synthesis in relation to protein requirements at various ages. Nature 1975;253:192–194.

    Article  PubMed  CAS  Google Scholar 

  53. Garlick PJ, Clugston GA, Swick RW, et al. Diurnal pattern of protein and energy metabolism in man. Am J Clin Nutr 1980;33:1983–1986.

    PubMed  CAS  Google Scholar 

  54. Millward DJ, Garlick PJ, Stewart RJC, et al. Skeletal-muscle growth and protein turnover. Biochem J 1975; 150:235–243.

    CAS  Google Scholar 

  55. Milley JR. Fetal protein metabolism. Semin Perinatol 1989;13:192–201.

    PubMed  CAS  Google Scholar 

  56. Waterlow JC. Protein turnover in the whole animal. Invest Cell Pathol 1980;3:107–119.

    PubMed  CAS  Google Scholar 

  57. Waterlow JC, Golden MHN, Garlick PJ. Protein turnover in man measured with 15N: comparison of end products and dose regimes. Am J Physiol 1978;235: E165-E174.

    PubMed  CAS  Google Scholar 

  58. Williams IH, Sugden PH, Morgan HE. Use of aromatic amino acids as monitors of protein turnover. Am J Physiol 1989;240:E677-E681.

    Google Scholar 

  59. Goldspink DF, Kelly FJ. Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem J 1984;217:507–516.

    PubMed  CAS  Google Scholar 

  60. Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 1980;192:719–723.

    PubMed  CAS  Google Scholar 

  61. Matthews DE, Motu KJ, Rohrbaugh DK, et al. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[l-13C]leucine. Am J Physiol 1980;238:E473-E479.

    PubMed  CAS  Google Scholar 

  62. Irving CS, Thomas MR, Malphus EW, et al. Lysine and protein metabolism in young women: subdivision based on the novel use of multiple stable isotopic labels. J Clin Invest 1986;77:1321–1331.

    Article  PubMed  CAS  Google Scholar 

  63. Thompson GN, Pacy PJ, Merritt H, et al. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol 1989; 256:E631-E639.

    PubMed  CAS  Google Scholar 

  64. Denne SC, Kalhan SC. Leucine metabolism in human newborns. Am J Physiol 1987;253:E608-E615.

    PubMed  CAS  Google Scholar 

  65. Stein TP, Leskiw MJ, Buzby GP, et al. Measurement of protein synthesis rates with [15N]glycine. Am J Physiol 1980;239:E294-E300.

    PubMed  CAS  Google Scholar 

  66. Krishnamurti CR, Schaefer AL. Measurement of plasma leucine flux and protein synthesis in pregnant ewes using gas chromatography and mass spectrometry. Nutr Rep Int 1987;35:683–691.

    CAS  Google Scholar 

  67. Krishnamurti CR, Janssens SM. Determination of leucine metabolism and protein turnover in sheep, using gas-liquid chromatography-mass spectrometry. Br J Nutr 1988;59:155–164.

    Article  PubMed  CAS  Google Scholar 

  68. Ling PR, Bistrian BR, Blackburn GL, et al. Effect of fetal growth on maternal protein metabolism in postab-sorptive rat. Am J Physiol 1987;252:E380-E390.

    PubMed  CAS  Google Scholar 

  69. Vazquez JA, Paul HS, Adibi SA. Relation between plasma and tissue parameters of leucine metabolism in fed and starved rats. Am J Physiol 1986;250:E615-E621.

    PubMed  CAS  Google Scholar 

  70. Mayel-Afshar S, Grimble RE Tyrosine oxidation and protein turnover in maternal tissues and the fetus during pregnancy in rats. Biochim Biophys Acta 1982; 716:201–207.

    Article  PubMed  CAS  Google Scholar 

  71. DeBenoist B, Jackson AA, Hall JStE, et al. Whole-body protein turnover in Jamaican women during pregnancy. Hum Nutr Clin Nutr 1985;39C:167–179.

    Google Scholar 

  72. Picou D, Taylor-Roberts T. The measurement of total protein synthesis and catabolism and nitrogen turnover in infants in different nutritional states and receiving different amounts of dietary protein. Clin Sci 1969;36: 283–296.

    PubMed  CAS  Google Scholar 

  73. Fitch L, King JC. Protein turnover and 3-methylhisti-dine excretion in non-pregnant, pregnant and gestational diabetic women. Hum Nutr Clin Nutr 1987;41C: 327–339.

    Google Scholar 

  74. Denne S, Patel D, Kalhan S. Leucine kinetics and fuel utilization during a brief fast in human pregnancy. Metabolism 1991 (in press).

    Google Scholar 

  75. Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 1980;192:719–723.

    PubMed  CAS  Google Scholar 

  76. Attaix D, Aurousseau E, Manghebati A, et al. Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb. Br J Nutr 1988;60: 77–84.

    Article  PubMed  CAS  Google Scholar 

  77. Goldspink DF, Lewis SEM, Kelley FJ. Protein synthesis during the developmental growth of the small and large intestine of the rat. Biochem J 1984;217:527–534.

    PubMed  CAS  Google Scholar 

  78. Mayel-Afshar S, Grimble RF. Changes in protein turnover during gestation in the foetuses, placentas, liver, muscle and whole body of rats given a low-protein diet. Biochim Biophys Acta 1983;756:182–190.

    Article  PubMed  CAS  Google Scholar 

  79. Mellican PE, Vernon RG, Pain VM. Protein metabolism in the mouse during pregnancy and lactation. Biochem J 1987;248:251–257.

    Google Scholar 

  80. Naismith DJ, Emery PW. Excretion of 3-methylhisti-dine by pregnant women: evidence for a biphasic system of protein metabolism in human pregnancy. Eur J Clin Nutr 1988;42:483–489.

    PubMed  CAS  Google Scholar 

  81. Young VR, Munro HN. Nt-methylhistidine (3-methyl-histidine) and muscle protein turnover: an overview. Fed Proc 1978;37:2291–2300.

    PubMed  CAS  Google Scholar 

  82. Rennie MJ, Millward DJ. 3-Methylhistidine excretion and the urinary 3-methylhistidine/creatinine ratio are poor indicators of skeletal muscle protein breakdown. Clin Sci 1983;65:217–225.

    PubMed  CAS  Google Scholar 

  83. Harris JE, Kretchmer N. Synthesis of hepatic protein during pregnancy in the rat. J Nutr 1988;118:1319–1324.

    PubMed  CAS  Google Scholar 

  84. Morton AJ, Goldspink DR Changes in protein turnover in rat uterus during pregnancy. Am J Physiol 1986;250: E114-E120.

    PubMed  CAS  Google Scholar 

  85. Pencharz PB. The 1987 Borden Award Lecture: protein metabolism in premature human infants. Can J Physiol Pharmacol 1988;66:1247–1252.

    Article  PubMed  CAS  Google Scholar 

  86. Catzeflis C, Schutz Y, Micheli J-L, et al. Whole body protein synthesis and energy expenditure in very low birth weight infants. Pediatr Res 1985;19:679–687.

    Article  PubMed  CAS  Google Scholar 

  87. Meier PR, Peterson RG, Bonds DR, et al. Rates of protein synthesis and turnover in fetal life. Am J Physiol 1981; 240:E320-E324.

    PubMed  CAS  Google Scholar 

  88. Van Veen LCP, Teng C, Hay WW, et al. Leucine disposal and oxidation rates in the fetal lamb. Metabolism 1987;36:48–53.

    Article  PubMed  Google Scholar 

  89. Kennaugh JM, Bell AW, Teng C, et al. Ontogenetic changes in the rates of protein synthesis and leucine oxidation during fetal life. Pediatr Res 1987;22:688–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kalhan, S.C., Assel, B.G. (1991). Protein Metabolism in Pregnancy. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics