Skip to main content

Nutritional Support of the Neonate: Alternate Fuels and Routes of Administration

  • Chapter
Principles of Perinatal-Neonatal Metabolism

Abstract

Since the advent of modern neonatal intensive care we have witnessed the survival of many critically ill very low birthweight (VLBW) neonates. Many of the technical advances that have contributed to the improved survival of these neonates have been focused on the treatment of cardiopulmonary disease. These important intensive care technologies include state of the art ventilators, medical or surgical therapy for patent ductus arteriosus, and surfactant therapy of respiratory distress syndrome.13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kliegman R, Behrman R. The fetus and the neonatal infant. In Behrman R, Kliegman R, eds: Nelson Textbook of Pediatrics, 14th ed. Philadelphia: Saunders, 1991, in press.

    Google Scholar 

  2. Davies DP. The first feed of low birthweight infants. Arch Dis Child 1978;53:187–192.

    PubMed  CAS  Google Scholar 

  3. Brooke OG. Nutrition in the preterm infant. Lancet 1983;2:514–516.

    Google Scholar 

  4. Auld PAM, Bhangananda P, Mehta S. The influence of an early caloric intake with I-V glucose on catabolism of premature infants. Pediatrics 1966;37:592–596.

    PubMed  CAS  Google Scholar 

  5. Cornblath M, Forbes AE, Pildes RS, et al. A controlled study of early fluid administration on survival of low birth weight infants. Pediatrics 1960;38:547–554.

    Google Scholar 

  6. Wu PYK, Teilmann P, Gabler M, et al. “Early” versus “late” feeding of low birth weight neonates: effect on serum bilirubin, blood sugar, and responses to glucagon and epinephrine tolerance tests. Pediatrics 1967; 39:733–739.

    PubMed  CAS  Google Scholar 

  7. Rabor IF, Oh W, Wu PYK, et al. The effects of early and late feeding of intrauterine fetally malnourished (IUM) infants. Pediatrics 1968;42:261–269.

    PubMed  CAS  Google Scholar 

  8. Kliegman R, Fanaroff A. Developmental metabolism and nutrition. In Gregory G, ed: Pediatric Anesthesia. New York: Churchill Livingstone, 1983.

    Google Scholar 

  9. Kliegman R, Hulman S. Intrauterine growth retardation: determinants of aberrant fetal growth. In Fanaroff A, Martin R, eds: Neonatal Perinatal Medicine: Diseases of the Fetus and Newborn, 4th ed. St. Louis: Mosby, 1987;69–114.

    Google Scholar 

  10. Bhakoo ON, Scopes JW. Minimal rates of oxygen consumption in small-for-dates babies during the first week of life. Arch Dis Child 1974;49:583–584.

    PubMed  CAS  Google Scholar 

  11. Ferre P, Pegorier J-P, Marliss EB, et al. Influence of exogenous fat and gluconeogenic substrates on glucose homeostasis in the newborn rat. Am J Physiol 1978;234:E129-E136.

    PubMed  CAS  Google Scholar 

  12. Kliegman RM, Morton S. The metabolic response of the canine neonate to twenty-four hours of fasting. Metabolism 1987;36:521–526.

    PubMed  CAS  Google Scholar 

  13. Kliegman RM, Miettinen EL, Adam PAJ. Fetal and neonatal responses to maternal canine starvation: circulating fuels and neonatal glucose production. Pedi-atr Res 1981;15:945–951.

    CAS  Google Scholar 

  14. Miettinen, E-L, Kliegman RM, Tserng K-Y Fetal neonatal responses to extended maternal canine starvation. I. Circulating fuels and glucose and lactate turnover. Pediatr Res 1983;17:634–638.

    PubMed  CAS  Google Scholar 

  15. Grylack LJ, Chu SS, Scanion JW. Use of intravenous fluids before cesarean section: effects on perinatal glucose, insulin, and sodium homeostasis. Obstet Gynecol 1984;63:654–658.

    PubMed  CAS  Google Scholar 

  16. Koh THHG, Aynsley-Green A, Tarbit M, et al. Neural dysfunction during hypoglycaemia. Arch Dis Child 1988;63:1353–1358.

    PubMed  CAS  Google Scholar 

  17. Koh THHG, Eyre JA, Aynsley-Green A. Neonatal hypoglycaemia-the controversy regarding definition. Arch Dis Child 1988;63:1386–1398.

    PubMed  CAS  Google Scholar 

  18. Kliegman RM. Cerebral metabolic intermediate response following severe canine intrauterine growth retardation. Pediatr Res 1986;20:662–667.

    PubMed  CAS  Google Scholar 

  19. Kliegman RM. Cerebral metabolic response to neonatal hypoglycemia in growth-retarded dogs. Pediatr Res 1988;24:649–652.

    PubMed  CAS  Google Scholar 

  20. Lucas A, Morley R, Cole TJ. Adverse neurodevelop-mental outcome of moderate neonatal hypoglycaemia. Br Med J 1988;297:1304–1309.

    CAS  Google Scholar 

  21. Sexson WR. Incidence of neonatal hypoglycemia: a matter of definition. J Pediatr 1984;105:149–150.

    PubMed  CAS  Google Scholar 

  22. Heck LJ, Erenberg A. Serum glucose levels in term neonates during the first 48 hours of life. J Pediatr 1987;110:119–122.

    PubMed  CAS  Google Scholar 

  23. Srinivasan G, Pildes RS, Cattamanchi G, et al. Plasma glucose values in normal neonates: a new look. J Pediatr 1986;109:114–117.

    PubMed  CAS  Google Scholar 

  24. Lilien LD, Pildes RS, Srinivasan G, et al. Treatment of neonatal hypoglycemia with minibolus and intravenous glucose infusion. J Pediatr 1980;97:295–298.

    PubMed  CAS  Google Scholar 

  25. Tsang R, Nichols B. Eds. Nutrition During Infancy. St. Louis: Mosby, 1988.

    Google Scholar 

  26. Wharton B. Nutrition and Feeding of Preterm Infants. Oxford: Blackwell, 1987.

    Google Scholar 

  27. Fomon S, Heird W. Energy and Protein Needs During Infancy. Orlando: Academic Press, 1986.

    Google Scholar 

  28. Freymond D, Schutz Y, Decombaz J, et al. Energy balance, physical activity, and thermogenic effect of feeding in premature infants. Pediatr Res 1986;20:638–645.

    PubMed  CAS  Google Scholar 

  29. Brooke OG. Energy balance and metabolic rate in preterm infants fed with standard and high-energy formulas. Br J Nutr 1980;44:13–23.

    PubMed  CAS  Google Scholar 

  30. Brooke OG, Alvear J, Arnold M. Energy retention, energy expenditure, and growth in healthy immature infants. Pediatr Res 1979;13:215–220.

    PubMed  CAS  Google Scholar 

  31. Whyte RK, Campbell D, Stanhope R, et al. Energy balance in low birth weight infants fed formula of high or low medium-chain triglyceride content. J Pediatr 1986;108:964–971.

    PubMed  CAS  Google Scholar 

  32. Reichman B, Chessex P, Verellen G, et al. Dietary composition and macronutrient storage in preterm infants. Pediatrics 1983;72:322–328.

    PubMed  CAS  Google Scholar 

  33. Reichman B, Chessex P, Putet G, et al. Diet, fat accretion, and growth in premature infants. N Engl J Med 1981;305:1495–1500.

    PubMed  CAS  Google Scholar 

  34. Committee on Nutrition. Nutritional needs of low-birth-weight infants. Pediatrics 1985;75:977–986.

    Google Scholar 

  35. Kretchmer N, Minkowski A. Nutritional Adaptation of the Gastrointestinal Tract of the Newborn. New York: Raven Press, 1983.

    Google Scholar 

  36. Stahl G, Spear ML, Hamosh M. Intravenous administration of lipid emulsions to premature infants. Clin Perinatol 1986;13:133–162.

    PubMed  CAS  Google Scholar 

  37. Pildes P. Neonatal hyperglycemia. J Pediatr 1986; 109: 905–907.

    PubMed  CAS  Google Scholar 

  38. Cowett RM, Oh W, Pollak A, et al. Glucose disposal of low birth weight infants: Steady state hyperglycemia produced by constant intravenous glucose infusion. Pediatrics 1979;63:389–396.

    PubMed  CAS  Google Scholar 

  39. Louik C, Mitchell AA, Epstein MF, et al. Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am J Dis Child 1985;139:783–786.

    PubMed  CAS  Google Scholar 

  40. Hulman S, Kliegman R, Heng J, et al. Relationship of substrate level to turnover rate in fasted adult and newborn dogs. Am J Physiol 1988;254:E137-E143.

    PubMed  CAS  Google Scholar 

  41. Pollak A, Cowett RM, Schwartz R, et al. Glucose disposal in low-birth-weight infants during steadystate hyperglycemia: effects of exogenous insulin administration. Pediatrics 1978;61:546–549.

    PubMed  Google Scholar 

  42. Goldman SL, Hirata T. Attenuated response to insulin in very low birthweight infants. Pediatr Res 1980; 14: 50–53.

    PubMed  CAS  Google Scholar 

  43. Cowett RM, Oh W, Schwartz R. Persistent glucose production during glucose infusion in the human neonate. J Clin Invest 1983;71:467–475.

    PubMed  CAS  Google Scholar 

  44. Sparks J, Lynch A, Chez R, et al. Glycogen regulation in isolated perfused near term monkey liver. Pediatr Res 1976;10:51–58.

    PubMed  CAS  Google Scholar 

  45. Ostertag SG, Jovanovic L, Lewis B, et al. Insulin pump therapy in the very low birth weight infant. Pediatrics 1986;78:625–630.

    PubMed  CAS  Google Scholar 

  46. Kliegman RM, Sparks JW. Perinatal galactose metabolism. J Pediatr 1985;107:831–841.

    PubMed  CAS  Google Scholar 

  47. Kliegman RM, Morton S. Galactose assimilation in pups of diabetic canine mothers. Diabetes 1987;36: 1280–1285.

    PubMed  CAS  Google Scholar 

  48. Kliegman RM, Miettinen EL, Kalhan SC, et al. The effect of enteric galactose on neonatal canine carbohydrate metabolism. Metabolism 1981;30:1109–1118.

    PubMed  CAS  Google Scholar 

  49. Pribylova J, Kozlova J. Glucose and galactose infusions in newborns of diabetic and healthy mothers. Biol Neonate 1979;36:193–199.

    PubMed  CAS  Google Scholar 

  50. Sparks J, Avery G, Fletcher A, et al. Parenteral galactose therapy in the glucose intolerant premature infant. J Pediatr 1982;100:255–261.

    PubMed  CAS  Google Scholar 

  51. Kliegman RM, Morton S. Sequential intrahepatic metabolic effects of enteric galactose alimentation in newborn rats. Pediatr Res 1988;24:302–307.

    PubMed  CAS  Google Scholar 

  52. Kaempf JW, Li H-Q, Groothius JR, et al. Galactose, glucose, and lactate concentrations in the portal venous and arterial circulations of newborn lambs after nursing. Pediatr Res 1988;23:598–602.

    PubMed  CAS  Google Scholar 

  53. Jannace PW, Lerman RH, Dennis RG, et al. Total parenteral nutrition-induced cyclic hypercapnia. Crit Care Med 1988;16:727–728.

    PubMed  CAS  Google Scholar 

  54. Heird WC, Hay W, Helms RA, et al. Pediatric parenteral amino acid mixture in low birth weight infants. Pediatrics 1988;81:41–50.

    PubMed  CAS  Google Scholar 

  55. Heird WC, Dell RB, Helms RA, et al. Amino acid mixture designed to maintain normal plasma amino acid patterns in infants and children requiring parenteral nutrition. Pediatrics 1987;80:401–408.

    PubMed  CAS  Google Scholar 

  56. Kerner JA. Parenteral nutrition in the premature infant. Part I. Perinatol Neonatal 1988;12:18–22.

    Google Scholar 

  57. Kerner JA. Parenteral nutrition in the premature infant. Part II. New information on specific nutrient requirements. Perinatol Neonatol 1988;12:8–33.

    Google Scholar 

  58. Lemons JA, Neal P, Ernst J. Nitrogen sources for parenteral nutrition in the newborn infant. Clin Perinatol 1986;13:91–109.

    PubMed  CAS  Google Scholar 

  59. Nose O, Tipton JR, Ament ME, et al. Effect of the energy source on changes in energy expenditure, respiratory quotient, and nitrogen balance during total parenteral nutrition in children. Pediatr Res 1987;21:538–541.

    PubMed  CAS  Google Scholar 

  60. Zlotkin SH. TrophAmine. Pediatrics 1988;82:388–389.

    PubMed  CAS  Google Scholar 

  61. Committee on Nutrition. Use of intravenous fat emulsions in pediatric patients. Pediatrics 1981;68:738–793.

    Google Scholar 

  62. Dainow II. Safety of Intralipid. Lancet 1980;2:1020~ 1021.

    Google Scholar 

  63. Hertel J, Tygstrup I, Andersen GE. Intravascular fat accumulation after Intralipid infusion in the very low-birth-weight infant. J Pediatr 1982; 100:975–976.

    PubMed  CAS  Google Scholar 

  64. Levene MI, Wigglesworth JS, Desai R. Pulmonary fat accumulation after Intralipid infusion in the preterm infant. Lancet 1980;2:815–818.

    PubMed  CAS  Google Scholar 

  65. Brans YW, Ritter DA, Kenny JD, et al. Influence of intravenous fat emulsion on serum bilirubin in very low birthweight neonates. Arch Dis Child 1987;62: 156–160.

    PubMed  CAS  Google Scholar 

  66. Skeie B, Askanazi J, Rothkopf MM, et al. Intravenous fat emulsions and lung function: a review. Crit Care Med 1988;16:183–194.

    PubMed  CAS  Google Scholar 

  67. Venus B, Prager R, Patel CB, et al. Cardiopulmonary effects of Intralipid infusion in critically ill patients. Crit Care Med 1988;16:587–590.

    PubMed  CAS  Google Scholar 

  68. Schroder H, Paust H, Schmidt R. Pulmonary fat embolism after intralipid therapy—a post-mortem artefact? Light and electron microscopic investigations in low-birth-weight infants. Acta Paediatr Scand 1984;73: 461–464.

    PubMed  CAS  Google Scholar 

  69. Schroder H, Paust H, Schmidt R. Pulmonary fat embolism after Intralipid therapy—a post-mortem artefact? Acta Paediatr Scand 1984;73:461–464.

    PubMed  CAS  Google Scholar 

  70. Greer FR, McCormick A, Locker J. Changes in fat concentration of human milk during delivery by intermittent bolus and continuous mechanical pump infusion. J Pediatr 1984;105:745–749.

    PubMed  CAS  Google Scholar 

  71. Etzioni A, Meshulam T, Zeltzer M, et al. Intralipid effects on preterm neonate serum: chemoattractant and opsonizing capacities. J Pediatr Gastroenterol Nutr 1987;6:105–108.

    PubMed  CAS  Google Scholar 

  72. Usmani SA, Harper RG, Usmani SF. Effect of a lipid emulsion (Intralipid) on polymorphonuclear leukocyte functions in the neonate. J Pediatr 1988;113:132–136.

    PubMed  CAS  Google Scholar 

  73. Fischer GW, Hunter KW, Wilson SR, et al. Diminished bacterial defenses with Intralipid. Lancet 1980;2:819–820.

    PubMed  CAS  Google Scholar 

  74. Yu VYH, James B, Hendry P, et al. Total parenteral nutrition in very low birthweight infants: a controlled trial. Arch Dis Child 1979;54:653–661.

    PubMed  CAS  Google Scholar 

  75. Kanarek KS, Villaveces C, Duckett G, et al. Serum concentrations of growth hormone, insulin, free thyroxine, thyrotropin, and Cortisol in very-low-birth-weight infants receiving total parenteral nutrition. Am J Dis Child 1988;142:993–995.

    PubMed  CAS  Google Scholar 

  76. Whitfield MF, Spitz L, Milner RDG. Clinical and metabolic consequences of two regimens of total parenteral nutrition in the newborn. Arch Dis Child 1983;58:168–175.

    PubMed  CAS  Google Scholar 

  77. Brooke OG, Lucas A. Metabolic bone disease in preterm infants. Arch Dis Child 1985;60:682–685.

    PubMed  CAS  Google Scholar 

  78. Klein GL, Ament ME, Bluestone R, et al. Bone disease associated with total parenteral nutrition. Lancet 1980;2:1041–1044.

    PubMed  CAS  Google Scholar 

  79. Steichen JJ, Gratton TL, Tsang RC. Osteopenia of prematurity: the cause and possible treatment. J Pediatr 1980;96:528–534.

    PubMed  CAS  Google Scholar 

  80. Chan GM, Mileur L, Hansen JW. Effects of increased calcium and phosphorus formulas and human milk on bone mineralization in preterm infants. J Pediatr Gastroenterol Nutr 1986;5:444–449.

    PubMed  CAS  Google Scholar 

  81. Chan GM, Mileur L, Hansen JW. Calcium and phosphorus requirements in bone mineralization of preterm infants. J Pediatr 1988;113:225–229.

    PubMed  CAS  Google Scholar 

  82. Dunn LL, Annable WL, Kliegman RM. Pigmented corneal rings in neonates with liver disease. J Pediatr 1987;110:771–776.

    PubMed  CAS  Google Scholar 

  83. Dunn L, Hulman S, Weiner J, et al. Beneficial effects of early hypocaloric enteral feeding on neonatal gastrointestinal function: preliminary report of a randomized trial. J Pediatr 1988;112:622–629.

    PubMed  CAS  Google Scholar 

  84. Beal EF, Nelson RM, Pucciarelli RL, et al. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979;64:342–347.

    Google Scholar 

  85. Farrell MK, Balistreri WE Parenteral nutrition and hepatobiliary dysfunction. Clin Perinatol 1986;13:197–226.

    PubMed  CAS  Google Scholar 

  86. Hodes JE, Grosfeld JL, Weber TR, et al. Hepatic failure in infants on total parenteral nutrition (TPN): clinical histopathologic observations. J Pediatr Surg 1982;17:463–468.

    PubMed  CAS  Google Scholar 

  87. Patterson K, Kapur SP, Chandra RS. Hepatocellular carcinoma in a noncirrhotic infant after prolonged parenteral nutrition. J Pediatr 1985;106:797–800.

    PubMed  CAS  Google Scholar 

  88. Rager R, Finegold MJ. Cholestasis in immature newborn infants: is parenteral alimentation responsible? J Pediatr 1975;826:264–269.

    Google Scholar 

  89. Balistreri W, Farrell M. (Eds). Enteral feeding: scientific basis and clinical applications. Report of Ninety-Fourth Ross Conference on Pediatric Research, Columbus, Ohio, Ross Laboratories 1988:1–161.

    Google Scholar 

  90. Aynsley-Green A. Hormones and postnatal adaptation to enteral nutrition. J Pediatr Gastroenterol Nutr 1983;2:2418–2427.

    Google Scholar 

  91. Aynsley-Green A. The adaptation of the human neonate to extrauterine nutrition: a pre-requisite for postnatal growth. In Cockburn F, ed: Fetal and Neonatal Growth. New York: Wiley, 1988;153.

    Google Scholar 

  92. Dworkin LD, Levin GM, Farber NJ, Spector MH. Small intestinal mass of the rat is partially determined by indirect effects of intraluminal nutrition. Gastroenterology 1976;71:626–630.

    PubMed  CAS  Google Scholar 

  93. Feldman E, Dowling R, McNaughton J, Peters T. Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology 1974;70:712–719.

    Google Scholar 

  94. Kliegman R, Walsh M. Neonatal necrotizing enterocolitis: pathogenesis, classification and spectrum of illness. Curr Probl Pediatr 1987;17:215–288.

    Google Scholar 

  95. Churella HR, Bachhuber WL, MacLean WC. Survey: methods of feeding low-birth-weight infants. Pediatrics 1985;76:243–249.

    PubMed  CAS  Google Scholar 

  96. Moyer-Mileur L, Chan GM. Nutritional support of very-low-birth-weight infants requiring prolonged assisted ventilation. Am J Dis Child 1986; 140:929–932.

    PubMed  CAS  Google Scholar 

  97. Brans YW, Sumners JE, Dweck HS, et al. Feeding the low birth weight infant: orally or parenterally? Preliminary results of a comparative study. Pediatrics 1974;54:15–22.

    PubMed  CAS  Google Scholar 

  98. Slagle TA, Gross SJ. Effect of early low-volume enteral substrate on subsequent feeding tolerance in very low birth weight infants. J Pediatr 1988;113:526–531.

    PubMed  CAS  Google Scholar 

  99. Unger A, Goetzman BW, Chan C, et al. Nutritional practices and outcome of extremely premature infants. Am J Dis Child 1986;140:1027–1033.

    PubMed  CAS  Google Scholar 

  100. Ostertag SG, LaGamma EF, Reisen CE, Ferrentino FL. Early enteral feeding does not affect the incidence of necrotizing enterocolitis. Pediatrics 1986;77:275–280.

    PubMed  CAS  Google Scholar 

  101. LaGamma EF, Ostertag MNS, Birenbaum H. Failure of delayed oral feedings to prevent necrotizing enterocolitis: results of study in very-low-birth-weight neonates. Am J Dis Child 1985;139:385–389.

    PubMed  CAS  Google Scholar 

  102. Lebenthal E, Tucker N. Carbohydrate digestion: development in early infancy. Clin Perinatol 1986; 13: 37–57.

    PubMed  CAS  Google Scholar 

  103. Lebenthal E, Leung Y. Feeding the premature and compromised infant: gastrointestinal considerations. Pediatr Clin North Am 1988;35:215–238.

    PubMed  CAS  Google Scholar 

  104. Ballard R. Pediatric Care of the ICN Graduate. Philadelphia: Saunders, 1988.

    Google Scholar 

  105. Williamson S, Finucane E, Ellis H, et al. Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child 1978;53:555–563.

    PubMed  CAS  Google Scholar 

  106. Ronnholm KAR, Perheentupa J, Siimes MA. Supplementation with human milk protein improves growth of small premature infants fed human milk. Pediatrics 1986;77:649–653.

    PubMed  CAS  Google Scholar 

  107. Bustamante SA, Fiello A, Pollack PF. Growth of premature infants fed formulas with 10%, 30% or 50% medium-chain triglycerides. Am J Dis Child 1987; 141:516–519.

    PubMed  CAS  Google Scholar 

  108. Schulze KF, Stefanski M, Masterson J, et al. Energy expenditure, energy balance, and composition of weight gain in low birth weight infants fed diets of different protein and energy content. J Pediatr 1987; 110:753–759.

    PubMed  CAS  Google Scholar 

  109. Kashyap S, Schulze KF, Forsyth M, et al. Growth, nutrient retention, and metabolic response in low birth weight infants fed varying intakes of protein and energy. J Pediatr 1988;113:713–721.

    PubMed  CAS  Google Scholar 

  110. Davies DP. Adequacy of expressed breast milk for early growth of preterm infants. Arch Dis Child 1977; 52:296–301.

    PubMed  CAS  Google Scholar 

  111. Williamson S, Finucane E, Ellis H, et al. Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child 1978;53:555–563.

    PubMed  CAS  Google Scholar 

  112. Ronnholm KAR, Perheentupa J, Siimes MA. Supplementation with human milk protein improves growth of small premature infants fed human milk. Pediatrics 1986;77:649–653.

    PubMed  Google Scholar 

  113. Bustamante SA, Fiello A, Pollack PF. Growth of premature infants fed formulas with 10%, 30% or 50% medium-chain triglycerides. Am J Dis Child 1987; 141:516–519.

    PubMed  CAS  Google Scholar 

  114. Schulze KF, Stefanski M, Masterson J, et al. Energy expenditure, energy balance, and composition of weight gain in low birth weight infants fed diets of different protein and energy content. J Pediatr 1987; 110:753–759.

    PubMed  CAS  Google Scholar 

  115. Kashyap S, Schulze KF, Forsyth M, et al. Growth, nutrient retention, and metabolic response in low birth weight infants fed varying intakes of protein and energy. J Pediatr 1988;113:713–721.

    PubMed  CAS  Google Scholar 

  116. Davies DP. Adequacy of expressed breast milk for early growth of preterm infants. Arch Dis Child 1977; 52:296–301.

    PubMed  CAS  Google Scholar 

  117. Gross SJ. Growth and biochemical response of preterm infants fed human milk or modified infant formula. N Engl J Med 1983;308:237–241.

    PubMed  CAS  Google Scholar 

  118. Lemons P, Stuart M, Lemons MA. Breast-feeding the premature infant. Clin Perinatol 1986;13:111–122.

    PubMed  CAS  Google Scholar 

  119. Anonymous. Breast not necessarily best. Lancet 1988; 1:624–625.

    Google Scholar 

  120. Atkinson SA, Bryan MH, Anderson GH. Human milk feeding in premature infants: protein, fat, and carbohydrate blances in the first two weeks of life. J Pediatr 1981;99:617–624.

    PubMed  CAS  Google Scholar 

  121. Stein H, Cohen D, Herman AAB, et al. Pooled pasteurized breast milk and untreated own mother’s milk in the feeding of very low birth weight babies: a randomized controlled trial. J Pediatr Gastroenterol Nutr 1986;5:242–247.

    PubMed  CAS  Google Scholar 

  122. Whyte RK, Haslam R, Vlainic C, et al. Energy balance and nitrogen balance in growing low birthweight infants fed human milk or formula. Pediatr Res 1983;17:891–898.

    PubMed  CAS  Google Scholar 

  123. Ronnholm KAR, Sipila I, Siimes MA. Human milk protein supplementation for the prevention of hypoproteinemia without metabolic imbalance in breast milk-fed, very low-birth-weight infants. J Pediatr 1982;101:243–247.

    PubMed  CAS  Google Scholar 

  124. Senterre J, Putet G, Salle B, et al. Effects of vitamin D and phosphorus supplementation on calcium retention in preterm infants fed banked human milk. J Pediatr 1983;103:305–307.

    PubMed  CAS  Google Scholar 

  125. Modanlou HD, Lim MO, Hansen JW, et al. Growth, biochemical status, and mineral metabolism in very-low-birth-weight infants receiving fortified preterm human milk. J Pediatr Gastroenterol Nutr 1986;5: 762–767.

    PubMed  CAS  Google Scholar 

  126. Venkataraman PS, Blick KE. Effect of mineral supplementation of human milk on bone mineral content and trace element metabolism. J Pediatr 1988; 113: 220–224.

    PubMed  CAS  Google Scholar 

  127. Ehrenkranz RA, Gettner PA, Nelli CM. Nutrient balance studies in premature infants fed premature formula or fortified preterm human milk. J Pediatr Gastroenterol Nutr 1989;8:58–67.

    PubMed  CAS  Google Scholar 

  128. Koketzko B, Tangermann R, von Kries R, et al. Intestinal milk-bolus obstruction in formula-fed premature infants given high doses of calcium. J Pediatr Gastroenterol Nutr 1988;7:548–553.

    Google Scholar 

  129. Pereira GR, Zucker A. Nutritional deficiencies in the neonate. Clin Perinatol 1986;13:175–189.

    PubMed  CAS  Google Scholar 

  130. Pereira GR, Lemons JA. Controlled study of trans-pyloric and intermittent gavage feeding in the small preterm infant. Pediatrics 1981;67:68–72.

    PubMed  CAS  Google Scholar 

  131. Whitfield MR Poor weight gain of the low birthweight infant fed nasojejunally. Arch Dis Child 1982;57:597–601.

    PubMed  CAS  Google Scholar 

  132. Ziegler MM. Short bowel syndrome in infancy: etiology and management. Clin Perinatol 1986;13:163–173.

    PubMed  CAS  Google Scholar 

  133. Tirlapur VG, Mir MA. Effect of low calorie intake on abnormal pulmonary physiology in patients with chronic hypercapneic respiratory failure. Am J Med 1984;77:987–994.

    PubMed  Google Scholar 

  134. Herve P, Simonnearu G, Girard P, et al. Hypercapnic acidosis induced by nutrition in mechnically ventilated patients: glucose versus fat. Crit Care Med 1985;13:537–540.

    PubMed  CAS  Google Scholar 

  135. Kwan R, Mir MA. Beneficial effects of dietary carbohydrate restriction in chronic cor pulmonale. Am J Med 1987;82:751–758.

    PubMed  CAS  Google Scholar 

  136. Pingleton SK, Harmon GS. Nutritional management in acute respiratory failure. JAMA 1987;257:3094–3099.

    PubMed  CAS  Google Scholar 

  137. Yunis KA, Oh W. Effects of intravenous glucose loading on oxygen consumption, carbon dioxide moduc-tion, and resting energy expenditure in infants with bronchopulmonary dysplasia. J Pediatr 1989; 115: 127–132.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kliegman, R.M., Aucott, S., Kosek, M. (1991). Nutritional Support of the Neonate: Alternate Fuels and Routes of Administration. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_37

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics