Skip to main content

Metabolism of the Neonate Requiring Surgery

  • Chapter
Principles of Perinatal-Neonatal Metabolism
  • 358 Accesses

Abstract

Postoperative or posttraumatic morbidity and mortality in the high risk adult patient have been correlated with, and may be participated by, the magnitude and duration of the metabolic response to the stressful event. Complications such as severe weight loss, cardiopulmonary insufficiency, thromboembolic disorders, gastric stress ulcers, impaired immunological function, prolonged convalescence, and death have been related to aspects of the metabolic response to surgical or traumatic stress.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kehlet H. Stress-free anaesthesia and surgery. Acta Anaesthesiol Scand 1979;23:503–504.

    Article  PubMed  CAS  Google Scholar 

  2. Moyer E, Cerra F, Chenier R, et al. Multiple systems organ failure. VI. Death predictors in the trauma-septic state—the most critical determinants. J Trauma 1981;21:862–869.

    Article  PubMed  CAS  Google Scholar 

  3. Rackow H, Salanitre E, Green LT. Frequency of cardiac arrest associated with anesthesia in infants and children. Pediatrics 1961;28:697–704.

    PubMed  CAS  Google Scholar 

  4. Schweiss JF, Pennington DG. Anesthetic management of neonates undergoining pallative operations for congenital heart defects. Cleve Clin Q 1981;48:153–165.

    PubMed  CAS  Google Scholar 

  5. Liebig J. Die Organisuhe Chemie In Ihrer Anwendung Auf Physiologie Und Pathologie. New York: Braun-schvweig, Wiley and Putnam, 1848.

    Google Scholar 

  6. Bauer J. Ilbur Zerretzungsvorgange in thierkirper unter dem kinflusse von blutentziehunger. Z Biol 1872;8:567–603.

    Google Scholar 

  7. Malcom JD. The physiology of death from traumatic fever; a study in abdominal surgery. Lancet 1893;1: 408–410,

    Article  Google Scholar 

  8. Malcom JD. The physiology of death from traumatic fever; a study in abdominal surgery. Lancet 1893;1: 460–462,

    Article  Google Scholar 

  9. Malcom JD. The physiology of death from traumatic fever; a study in abdominal surgery. Lancet 1893;1: 519–521.

    Article  Google Scholar 

  10. Aub JC, Wu H. Studies in experimental traumatic shock. II. Chemical changes in the blood. Am J Physiol 1920;54:416–424.

    CAS  Google Scholar 

  11. Bernard C. Chiens rendus diabetiques. C R Soc Biol 1849;1:60–63.

    Google Scholar 

  12. Bernard C. Lecons De Physiologie Experimentelle Au College De France, Paris, 1855.

    Google Scholar 

  13. Bernard C. Lecons De Physiologie Operatoire. Paris: Baillière, 1879.

    Google Scholar 

  14. Brown-Sequard C.-E. Des effets produits chez l’homme par des injections sous-cutunees d’un liquide retire des testicules frais de cobae et de chien. C R Soc Biol 1889;9:415–454.

    Google Scholar 

  15. Brown-Sequard C.-E. The effects produced on man by subcutaneous injections of a liquid obtained from the testicles of animals. Lancet 1889;2:105–107.

    Article  Google Scholar 

  16. Pringle H, Maunsell RCB, Pringle S. Clinical effects of ether anaesthesia on renal activity. Br Med J 1905; 2:542–543.

    Article  PubMed  CAS  Google Scholar 

  17. Evans GH. The abuse of normal salt solutions. JAMA 1911;57:2126–2127.

    Article  Google Scholar 

  18. Cannon WB. The Shattuck Lecture: the physiological factors concerned in surgical shock. Boston Med Surg J 1917;176:859–867.

    Article  Google Scholar 

  19. Cannon WB. A consideration of the nature of wound shock. JAMA 1918;70:611–617.

    Google Scholar 

  20. Cannon WB. The Wisdom of the Body. New York: Norton, 1932.

    Google Scholar 

  21. Cuthbertson DP. The influence of prolonged muscular rest on metabolism. Biochem J 1929;23:1328–1345.

    PubMed  CAS  Google Scholar 

  22. Cuthbertson DP. Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 1932;1:233–246.

    CAS  Google Scholar 

  23. Cuthbertson DP, Munro AN. A study of the effect of overfeeding on the protein metabolism of man. Biochem J 1937;31:694–705.

    PubMed  CAS  Google Scholar 

  24. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 1946;6:117 – 230.

    Article  CAS  Google Scholar 

  25. Moore FD, Ball MR. The Metabolic Response to Surgery. Springfield, IL: Charles C Thomas, 1952.

    Google Scholar 

  26. Hayes MH, Coller FA. The neuroendocrine control of water and electrolyte excretion during surgical anesthesia. Surg Gynecol Obstet 1952;95:142–149.

    Google Scholar 

  27. Sandberg AA, Elk-Nes K, Sammeis LT, et al. The effects of surgery on the blood levels and metabolism of 17-hydroxy-corticosteroids in man. J Clin Invest 1954;33:1509–1516.

    Article  PubMed  CAS  Google Scholar 

  28. Hume DM, Egdahl RH. The importance of the brain in the endocrine response to injury. Ann Surg 1959; 150:697–712.

    Article  PubMed  CAS  Google Scholar 

  29. Von Bezold A. Untersuchungen über die Vertheilung von Wasser, organischer Materie und anorganischen Verbindugen in Thierreiche. Z Wissensch Zool 1857;8:487–524.

    Google Scholar 

  30. Von Bezold A. Das chemische Shebett der Wirkel-thiere. Z Wissensch Zool 1858;9:240–269.

    Google Scholar 

  31. Ylppo A. Neugebofenen-, Hunger-und intoxikatations acidosis in ihren Beziehungen zueinander. Z Kinder-heilkd 1916;14:268–448.

    Article  Google Scholar 

  32. Marples E, Lippard VW. Acid-base balance of newborn infants. II. Consideration of the low alkaline reserve of normal new-born infants. Am J Dis Child 1932;44:31–39.

    CAS  Google Scholar 

  33. Marples E, Lippard VW Acid-base balance of newborn infants. III. Influence of cows milk on the acid base balance of the blood of new-born infants. Am J Dis Child 1933;45:294–306.

    CAS  Google Scholar 

  34. Marriott WM. Some phases of the pathology of nutrition in infancy. Harvey Lect 1919;15:121–151.

    Google Scholar 

  35. Moore RM. Acute intestinal obstruction in infants and children: physiological and pathological considerations. Miss Doctor 1946;23:554–556.

    CAS  Google Scholar 

  36. Santulli TV. Intestinal obstruction in the newborn infant. J Pediatr 1954;44:317–337.

    Article  PubMed  CAS  Google Scholar 

  37. Rickham PR The Metabolic Response to Neonatal Surgery. Cambridge: Harvard University Press, 1957.

    Google Scholar 

  38. Ito T, Iyomasa Y, Inoue T. Changes of the postoperative minimal oxygen consumption of the newborn. J Pediatr Surg 1976;11:495–503.

    Article  PubMed  CAS  Google Scholar 

  39. Cuthbertson DP. Post-shock metabolic response. Lancet 1942;1:433–437.

    Article  Google Scholar 

  40. Cuthbertson DP. Protein metabolism in relation to energy needs. Metabolism 1959;8:787–808.

    PubMed  CAS  Google Scholar 

  41. Watters JM, Bessey PQ, Dinarello CA, et al. Both inflammatory and endocrine mediators stimulate host response to sepsis. Arch Surg 1986; 121:179–190.

    Article  PubMed  CAS  Google Scholar 

  42. Stjernstrom H, Jorfeldt L, Wiklund L. The influence of abdominal surgical trauma upon the turnover of some blood borne metabolites in the human leg. JPEN 1981;5:207–214.

    Article  CAS  Google Scholar 

  43. Ross H, Johnston IDA, Welborn TA, et al. Effect of abdominal operation on glucose tolerance and serum levels of insulin, growth hormone and hydrocortisone. Lancet 1966;2:563–566.

    Article  PubMed  CAS  Google Scholar 

  44. Wright PD, Henderson K, Johnston IDA. Glucose utilization and insulin secretion during surgery in man. Br J Surg 1974;61:5–8.

    Article  PubMed  CAS  Google Scholar 

  45. Wilmore DW. Glucose metabolism following severe injury. J Trauma 1981;21:705–707.

    Article  CAS  Google Scholar 

  46. Alberti KGMM, Batstone GF, Foster KJ, et al. Relative role of various hormones mediating the metabolic response to injury. J Parenter Enteral Nutr 1980;4: 141–146.

    Article  CAS  Google Scholar 

  47. Bromage PR, Shibata HR, Willoughby HW. Influence of prolonged epidural blockade on blood sugar and Cortisol response to operations upon the upper part of the abdomen and thorax. Surg Gynecol Obstet 1971; 132:1051–1056.

    PubMed  CAS  Google Scholar 

  48. Kusaka M, Ui M. Activation of the Cori Cycle by epinephrine. Am J Physiol 1977;232:E145-E155.

    PubMed  CAS  Google Scholar 

  49. Mills NL, Beaudet RL, Isom OW, et al. Hyperglycae-mia during cardiopulmonary bypass. Ann Surg 1973; 177:203–205.

    Article  PubMed  CAS  Google Scholar 

  50. Benedict FG, Talbot FB. The Physiology of the Newborn Infant: Character and Amount of the Catabolism. Carnegie Institute Publ. No. 233, Washington, DC, 1915.

    Google Scholar 

  51. Sheeley HJ. Glycogen reserves and their changes at birth and in anoxia. Br Med Bull 1961;17:137–143.

    Google Scholar 

  52. Cornblath M, Ganzon AF, Nicolopoulos D, et al. Studies of carbohydrate metabolism in the newborn infant. III. Some factors influencing the capillary blood sugar and the response to glucagon during the first hours of life. Pediatrics 1961;27:378–389.

    PubMed  CAS  Google Scholar 

  53. Novak M, Melichar V, Hahn P, et al. Levels of lipids in the blood of newborn infants and the effect of glucose administration. Physiol Bohemoslov 1961; 10: 488–492.

    PubMed  CAS  Google Scholar 

  54. Persson B, Gentz J. The pattern of blood lipids, glycerol and ketone bodies during the neonatal period, infancy and childhood. Acta Paediatr Scand 1966;55: 353–362.

    PubMed  CAS  Google Scholar 

  55. Widdowson EM, Spray CM. Chemical development in-utero. Arch Dis Child 1951;26:205–214.

    Article  PubMed  CAS  Google Scholar 

  56. Hughes EA, Stevens LH, Wilkinson AW. Some aspects of starvation in the newborn baby. Arch Dis Child 1964;39:598–604.

    Article  PubMed  CAS  Google Scholar 

  57. Elphick MC, Wilkinson AW. Glucose intolerance in newborn infants undergoing surgery for alimentary tract anomalies. Lancet 1968;2:539–554.

    Article  PubMed  CAS  Google Scholar 

  58. Elphick MC, Wilkinson AW. The effects of starvation and surgical injury on the plasma levels of glucose, free fatty acids, and neutral lipds in newborn babies suffering from various congenital anomalies. Pediatr Res 1981;15:313–318.

    Article  PubMed  CAS  Google Scholar 

  59. Pinter A. The metabolic effects of anesthesia and surgery in the newborn infant. Z Kinderchir 1973; 12: 149–162.

    Google Scholar 

  60. Elphick MC. The effect of starvation and injury on the utilization of glucose in newborn rabbits. Biol Neonate 1971;17:399–409.

    Article  PubMed  CAS  Google Scholar 

  61. Pinter A, Schafer J. Metabolic effects of anesthesia and surgery newborn: blood glucose, plasma free fatty acids, free amino acid and blood lactate level in newborn puppies. Acta Paediatr Acad Sci Hung 1973; 14: 85–90.

    PubMed  CAS  Google Scholar 

  62. Kalhan SC, Bier DM, Savin SM, et al. Estimation of glucose turnover and 13C recycling in the human newborn by simultaneous [1–13C]glucose and [6,6–2H2] glucose tracers. J Clin Endocrinol Metab 1980;50: 456–460.

    Article  PubMed  CAS  Google Scholar 

  63. Kalhan SC, C’Angelo LJ, Savin S, et al. Glucose production in pregnant women at term gestation: sources of glucose for human fetus. J Clin Invest 1979; 63:388–394.

    Article  PubMed  CAS  Google Scholar 

  64. Marsac C, Saudubray JM, Moncion A, et al. Development of gluconeogenic enzymes in the liver of human newborns. Biol Neonate 1976;28:317–325.

    Article  Google Scholar 

  65. Gump FE, Long CL, Geiger JW, et al. The significance of altered gluconeogenesis in surgical catab-olism. J Trauma 1975;15:704–712.

    Article  PubMed  CAS  Google Scholar 

  66. Im MJC, Hoopes JE. Energy metabolism in healing skin wounds. J Surg Res 1970;10:459–466.

    Article  PubMed  CAS  Google Scholar 

  67. Finberg L. Dangers to infants caused by changes in osmolal concentration. Pediatrics 1967;40:1031–1034.

    PubMed  CAS  Google Scholar 

  68. Arant BS, Gooch WM. Effects of acute hyperglycemia on the central nervous system of neonatal puppies. Pediatr Res 1978; 12:549.

    Article  Google Scholar 

  69. Bent JM, Paterson JL, Mashiter K, et al. Effects of high-dose fentanyl anesthesia on the established metabolic and endocrine response to surgery. Anesthesia 1984;39:19–23.

    Article  CAS  Google Scholar 

  70. Walsh ES, Traynor C, Paterson JL, et al. Effect of different intraoperative fluid regimens on circulating metabolites and insulin during abdominal surgery. Br J Anaesth 1983;55:135–140.

    Article  PubMed  CAS  Google Scholar 

  71. Bunker JP. Metabolic acidosis during anesthesia and surgery. Anesthesiology 1962;23:107–123.

    Article  PubMed  CAS  Google Scholar 

  72. Felig P, Pozefsky T, Marliss E, et al. Alanine: key role in gluconeogenesis. Science 1970;167:1003–1004.

    Article  PubMed  CAS  Google Scholar 

  73. Reisner SH, Aranda JV, Colle E, et al. The effect of intravenous glucagon on plasma amino acids in the newborn. Pediatr Res 1973;7:184–191.

    Article  PubMed  CAS  Google Scholar 

  74. DeLamater PV, Sperling MA, Fiser RH, et al. Plasma alanine: relation to plasma glucose, glucagon and insulin in the neonate. J Pediatr 1974;85:702–706.

    Article  PubMed  CAS  Google Scholar 

  75. Anand KJS, Sippell MA, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet 1987;1:243–248.

    Article  PubMed  CAS  Google Scholar 

  76. Anand KJS, Brown MJ, Causon RC, et al. Can the human neonate mount an endocrine and metabolic response to surgery? J Pediatr Surg 1985;20: 41–48.

    Article  PubMed  CAS  Google Scholar 

  77. Studley HO. Percentage of weight loss: a basic indicator of surgical risk in patients with chronic peptide ulcer. JAMA 1936;106:458–460.

    Article  Google Scholar 

  78. Christensen J, Kehlet H. Postoperative fatigue and changes and nutritional status. Br J Surg 1985;71: 473–476.

    Article  Google Scholar 

  79. Cuthbertson DP. The disturbance of metabolism produced by bony and nonbony injury, with notes on certain abnormal conditions of bone. Biochem J 1930;24: 1244–1263.

    PubMed  CAS  Google Scholar 

  80. Duke JH, Jorgensen SB, Broell JR, et al. Contribution of protein to caloric expenditure following injury. Surgery 1970;68:168–174.

    PubMed  Google Scholar 

  81. Ryan NT. Metabolic adaptations for energy production during trauma and sepsis. Surg Clin North Am 1976;56:1073–1090.

    PubMed  CAS  Google Scholar 

  82. McMenamy RH, Birkhahn R, Oswald G, et al. Multiple systems organ failure. I. The basal state. J Trauma 1981;21:99–114.

    Article  PubMed  CAS  Google Scholar 

  83. Coran AG. Nutrition of the surgical patient. In Welch KJ, ed: Pediatric Surgery, 4th ed. Chicago: Year Book, 1986.

    Google Scholar 

  84. Ballard FJ, Tomas FM, Pope LM, et al. Muscle protein degradation in premature human infants. Clin Sci 1979;57:535–544.

    PubMed  CAS  Google Scholar 

  85. Fleck A. Protein metabolism after surgery. Proc Nutr Soc 1980;39:125–132.

    Article  PubMed  CAS  Google Scholar 

  86. Johnston IDA. Endocrine aspects of the metabolic response to surgical operation. Ann R Coll Surg Engl 1964;35:270–286.

    PubMed  CAS  Google Scholar 

  87. Rich AJ, Wright PD. Ketosis and nitrogen excretion in undernourished surgical patients. JPEN 1979;3:350–354.

    Article  CAS  Google Scholar 

  88. Wannemacher RW, Dinterman RE. Total body protein catabolism in starved and infected rats. Am J Clin Nutr 1977;30:1510–1511.

    PubMed  CAS  Google Scholar 

  89. Ogata ES, Foung SKH, Holliday MA. The effects of starvation and refeeding on muscle protein synthesis and catabolism in the young rat. J Nutr 1978; 108: 759–765.

    PubMed  CAS  Google Scholar 

  90. Marliss EB, Murray FT, Nakhooda AF. The metabolic response to hypocaloric protein diets in obese man. J Clin Invest 1978;62:468–479.

    Article  PubMed  CAS  Google Scholar 

  91. Tomas FM, Ballard FJ, Pope LM. Age dependent changes in the rate of myofibrillar protein degradation in humans as assessed by 3-methylhistidine and urinative excretion. Clin Sci 1979;56:341–346.

    PubMed  CAS  Google Scholar 

  92. Colle E, Paulsen EP. Response of the newborn infant to major surgery. I. Effects on water, electrolyte, and nitrogen balance. Pediatrics 1959;23:1063–1084.

    PubMed  CAS  Google Scholar 

  93. Hansen JDL, Smith CA. Effects of withholding fluid in the immediate post-natal period. Pediatrics 1953; 12:99–113.

    PubMed  CAS  Google Scholar 

  94. Duffy B, Pencharz P. The effects of surgery on the nitrogen metabolism of parenterally fed human neonates. Pediatr Res 1986;20:32–35.

    Article  PubMed  CAS  Google Scholar 

  95. Zlotkin SH. Intravenous nitrogen intake requirements in full-term newborns undergoing surgery. Pediatrics 1984;73:493–496.

    PubMed  CAS  Google Scholar 

  96. Winthrop AL, Jones PJH, Schoeller DA, et al. Changes in the body composition of the surgical infant in the early postoperative period. J Pediatr Surg 1987; 22:546–549.

    Article  PubMed  CAS  Google Scholar 

  97. Johnston IDA, Dale G, Craig RP, et al. Plasma amino acid concentrations in surgical patients. JPEN 1980; 4:161–164.

    Article  CAS  Google Scholar 

  98. Vinnars E, Bergstrom J, Furst P. Influence of postoperative state on the intracellular free amino acids in human muscle tissue. Ann Surg 1975;182:665–671.

    Article  PubMed  CAS  Google Scholar 

  99. Elia M, Ilic V, Bacon S, et al. Relationship between the basal blood alanine concentration and the removal of an alanine load in various clinical states in man. Clin Sci 1980;58:301–304.

    PubMed  CAS  Google Scholar 

  100. Karl IE, Garber AJ, Kipnis DM. Alanine and gluta-mine synthesis and release from skeletal muscle. J Biol Chem 1976;251:844–860.

    PubMed  CAS  Google Scholar 

  101. Muhlbacher F, Kapadia CF, Colpoys MF, et al. Effects of glucocorticoids on glutamine metabolism in skeletal muscle. Am J Physiol 1984;10:E75-E83.

    Google Scholar 

  102. Lund P, Williamson DH. Inter-tissue nitrogen fluxes. Br Med Bull 1985;41:251–256.

    PubMed  CAS  Google Scholar 

  103. Dale G, Young G, Latner AL, et al. The effect of surgical operation on venous plasma amino acids. Surgery 1977;81:295–301.

    PubMed  CAS  Google Scholar 

  104. Wedge JH, DeCampos R, Kerr A. Branched-chain amino acids, nitrogen excretion and injury in man. Clin Sci Mol Med 1976;50:393–399.

    PubMed  CAS  Google Scholar 

  105. Fischer JE, Yoshimura N, Aguire A, et al. Plasma amino acids in patients with hepatic encephalopathy. Am J Surg 1974;127:40–47.

    Article  PubMed  CAS  Google Scholar 

  106. Ansley JD, Issacs JW, Rikkers LF, et al. Quantitative tests on nitrogen metabolism in cirrhosis in relation to other manifestations of liver disease. Gastroenterology 1978;75:570–579.

    PubMed  CAS  Google Scholar 

  107. McMenamy RM, Shoemaker WC, Richmond JE, et al. Uptake and metabolism of amino acids by the dog liver perfused in situ. Am J Physiol 1962;202: 407–414.

    CAS  Google Scholar 

  108. Elia M, Farrell R, Iilc V, et al. The removal of infused leucine after injury, starvation and other conditions in man. Clin Sci 1980;59:275–283.

    PubMed  CAS  Google Scholar 

  109. Barbul A. Arginine: biochemistry, physiology and therapeutic implications. JPEN 1986;10:227–238.

    Article  CAS  Google Scholar 

  110. Saito H, Trockie O, Wang S, et al. Metabolic and immune effects of dietary arginine supplementation after burn. Arch Surg 1987;122:784–789.

    Article  PubMed  CAS  Google Scholar 

  111. Sitren HS, Fisher H. Nitrogen retention in rats fed on diets enriched with arginine and glycine. I. Improved N retention after trauma. Br J Nutr 1977;37:195–208.

    CAS  Google Scholar 

  112. Barbul A, Rettura G, Levenson MS, et al. Wound healing and thymotropic effects of arginine: a pituitary mechanism of action. Am J Clin Nutr 1983;37:786–794.

    PubMed  CAS  Google Scholar 

  113. Mulloy AL, Kari FW, Visek WJ. Dietary arginine, insulin secretion, glucose tolerance and liver lipids during repletion of protein depleted rats. Horm Metab Res 1982;14:471–475.

    Article  PubMed  CAS  Google Scholar 

  114. Clowes JHA Jr, Randall HT, Cha CJ. Amino acid and energy metabolism in septic and traumatized patients. JPEN 1980;4:195–205.

    Article  Google Scholar 

  115. Clowes JHA, George BC, Villee CA, et al. Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 1983;308:545–552.

    Article  PubMed  Google Scholar 

  116. Finley RJ, Inculet RI, Pace R, et al. Major operative trauma increases peripheral amino acid release during the steady-state infusion of total parenteral nutrition in man. Surgery 1986;99:491–499.

    PubMed  CAS  Google Scholar 

  117. Garber AJ, Menzel PH, Boden G, et al. Hepatic keto-genesis and gluconeogenesis in humans. J Clin Invest 1971;54:981–989.

    Article  Google Scholar 

  118. Wilmore DW, Goodwin CW, Aulick LH, et al. Effect of injury and infection on visceral metabolism and circulation. Ann Surg 1980;192:491–504.

    Article  PubMed  CAS  Google Scholar 

  119. Hulton N, Johnson DJ, Smith RJ, et al. Hormonal blockade modifies post-traumatic protein catabolism. J Surg Res 1985;39:310–315.

    Article  PubMed  CAS  Google Scholar 

  120. Warner BW, James JH, Hasselgren PO, et al. Effect of catabolic hormone infusion on organ amino acid uptake. J Surg Res 1987;42:418–424.

    Article  PubMed  CAS  Google Scholar 

  121. Hasselgren PO, James JH, Fischer JE. Inhibited muscle amino acid uptake in sepsis. Ann Surg 1986;203: 360–365.

    Article  PubMed  CAS  Google Scholar 

  122. Knutrud O. The water and electrolyte metabolism in the newborn child after major surgery. Oslo: Univer-sitetsforlaget, 1965.

    Google Scholar 

  123. Hughes EA, Stevens LH, Toms DA, et al. Esophageal atresia: metabolic effects of operation. Br J Surg 1965; 52:403–410.

    Article  PubMed  CAS  Google Scholar 

  124. Wilkinson AW, Hughes EA, Stevens LH. Neonatal duodenal obstruction: the influence of treatment on the metabolic effects of operation. Br J Surg 1965;52: 410–424.

    Article  PubMed  CAS  Google Scholar 

  125. Sukarochano K, Motai Y, Slim M, et al. Postoperative protein metabolism in pediatric surgery. Surg Gynecol Obstet 1965;121:79–90.

    Google Scholar 

  126. Grewal RS, Mampilly J, Misra TR. Postoperative protein metabolism and electrolyte changes in pediatric surgery. Int Surg 1969;51:142–148.

    PubMed  CAS  Google Scholar 

  127. Greenall MJ, Kettlewell MGW, Gouch MH. Nitrogen requirements for postoperative parenteral nutrition in neonates. Acta Ther 1983;9:5–10.

    Google Scholar 

  128. Young VR, Munro HN. N T-methylhistidine (3-methylhistidine) and muscle protein turnover; an overview. Fed Proc 1978;37:2291–2300.

    PubMed  CAS  Google Scholar 

  129. Burgoyne JL, Ballard FJ, Tomas FM, et al. Measurements of myofibrillar protein breakdown in newborn human infants. Clin Sci 1982;63:421–427.

    PubMed  CAS  Google Scholar 

  130. Anand KJS. Metabolic and endocrine effects of surgery and anesthesia in the human newborn infant. Doctoral thesis, University of Oxford, 1985.

    Google Scholar 

  131. Seashore JH, Huszar G, Davis EM. Urinary 3-methylhistidine/creatinine ratio as a clinical tool: correlation between 3-methylhistidine excretion and metabolic and clinical states in healthy and stressed premature infants. Metabolism 1981;30:959–969.

    Article  PubMed  CAS  Google Scholar 

  132. Anand KJS, Sippell WG, Schofield NM, et al. Does halothane anaesthesia decrease the metabolic and endocrine stress response of newborn infants undergoing operation? Br Med J 1988;296:668–672.

    Article  CAS  Google Scholar 

  133. Pencharz PB, Steffee WP, Cochran W, et al. Protein metabolism in human neonates: nitrogen balance studies, estimated obligatory losses of nitrogen and whole-body turnover of nitrogen. Clin Sci Mol Med 1977;52:485–498.

    PubMed  CAS  Google Scholar 

  134. Pinter A. Metabolic changes in newborn infants following surgical operations. Acta Pediatr Acad Sci Hung 1975;16:171–180.

    CAS  Google Scholar 

  135. Allison SP, Hinton P, Chamberlain MJ. Intravenous glucose tolerance, insulin and free fatty acid levels in burned patients. Lancet 1968;1:1113–1116.

    Article  Google Scholar 

  136. Allison SP, Tomlin PJ, Chamberlain MJ. Some effects of anaesthesia and surgery on carbohydrate and fat metabolism. Br J Anaesth 1969;41:588–593.

    Article  PubMed  CAS  Google Scholar 

  137. Meguid MM, Brennan MF, Aoki TT, et al. Hormonesubstrate interrelationships following trauma. Arch Surg 1974;109:776–783.

    Article  PubMed  CAS  Google Scholar 

  138. Kinney JM, Duke JH, Long CL, et al. Tissue fuel and weight loss after injury. J Clin Pathol 1970;23: 65–72.

    Google Scholar 

  139. Williamson DH. Regulation of ketone body metabolism and the effects of injury. Acta Chir Scand [Suppl 507]1981;52:22–29.

    Google Scholar 

  140. Steinberg D, Khoo JC. Hormone sensitive lipase of adipose tissue. Fed Proc 1977;36:1986–1990.

    PubMed  CAS  Google Scholar 

  141. Forse RA, Leibel R, Askanazi J, et al. Adrenergic control of adipocyte lipolysis in trauma and sepsis. Ann Surg 1987;206:744–751.

    Article  PubMed  CAS  Google Scholar 

  142. Wolfe RR, Herndon DN, Jahoor F, et al. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987;317:403–408.

    Article  PubMed  CAS  Google Scholar 

  143. Wolfe RR, Herndon DN, Peters EJ, et al. Regulation of lipolysis in severely burned children. Ann Surg 1987;206:214–221.

    Article  PubMed  CAS  Google Scholar 

  144. Cooper GM, Holdcroft A, Hall GM, et al. Epidural analgesia and the metabolic response to surgery. Can Anaesth Soc J 1979;26:381–385.

    Article  PubMed  CAS  Google Scholar 

  145. Foster KJ, Alberti KGMM, Binder C, et al. Lipid metabolites and nitrogen balance after abdominal surgery in man. Br J Surg 1979;66:242–245.

    Article  PubMed  CAS  Google Scholar 

  146. Oppenheim WL, Williamson DH, Smith R. Early biochemical changes and severity of injury in man. J Trauma 1980;20(2):135–140.

    Article  PubMed  CAS  Google Scholar 

  147. Kehlet H, Brandt MR, Hansen AP, et al. Effect of epidural analgesia on metabolic profiles during and after surgery. Br J Surg 1979;66:543–546.

    Article  PubMed  CAS  Google Scholar 

  148. Mayor F, Cuezva JM. Hormonal and metabolic changes in the perinatal period. Biol Neonate 1985;48:185–196.

    Article  PubMed  CAS  Google Scholar 

  149. Anand KJS, Aynsley-Green A. Metabolic and endocrine effects of surgical ligation of patent ductus arteriosus in the human preterm neonate: are there implications for further improvement of postoperative outcome? Mod Probl Paediatr 1985;23:143–157.

    Google Scholar 

  150. Williamson DH. The production and utilization of ketone bodies in the neonate: In Jones CT, ed: Biochemical Development of the Fetus and Neonate. Amsterdam: Elsevier, 1982,621–650.

    Google Scholar 

  151. Anand KJS. Hormonal and metabolic functions of neonates and infants undergoing surgery. Curr Opin Cardiol 1986;1:681–689.

    Article  Google Scholar 

  152. Anand KJS, Brown MJ, Bloom SR, et al. Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anesthesia and surgery. Horm Res. 1985;22:115–128.

    Article  PubMed  CAS  Google Scholar 

  153. Talbert JL, Karmen A, Graystone JE, et al. Assessment of the infants response to stress. Surgery 1967; 61:626–633.

    PubMed  CAS  Google Scholar 

  154. Anand KJ, Brown MJ, Causen RL, et al. Can the human neonate mount an endocrine and metabolic response to surgery? J Pediatr Surg 1985;20:41–48.

    Article  PubMed  CAS  Google Scholar 

  155. Bougneres PF, Karl IE, Hillman LS, et al. Lipid transport in the human newborn: palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J Clin Invest 1982;70:262–270.

    Article  PubMed  CAS  Google Scholar 

  156. Williamson JR. In Hanson RW, Mehlman MA, eds: Gluconeogenesis, Its Regulation in Mammalian Species. New York: Wiley, 1976; 165–220.

    Google Scholar 

  157. Shelley HJ. Carbohydrate reserves in the newborn infant. Br Med J 1964;1:273–275.

    Article  PubMed  CAS  Google Scholar 

  158. Heard CRC, Stewart RJC. Protein malnutrition and disorders of the endocrine glands: biochemical changes. Acta Endocrinol [Suppl] (Copenh) 1960;51:1277–1278.

    Google Scholar 

  159. Baird JD, Farquhar JW Insulin-secreting capacity in newborn infants of normal and diabetic women. Lancet 1962;1:71–74.

    Article  PubMed  CAS  Google Scholar 

  160. Bowie MD, Mulligan PB, Schwartz R. Intravenous glucose tolerance in the normal newborn infant: the effects of a double dose of glucose and insulin. Pediatrics 1963;31:590–598.

    PubMed  CAS  Google Scholar 

  161. Hahn P, Koldovsky O. Utilization of Nutrients During Postnatal Development. New York: Pergamon Press 1966.

    Google Scholar 

  162. McCance RA, Strangeways WMB. Protein catabolism and oxygen consumption during starvation in infants, young adults and old men. Br J Nutr 1954;8:21–32.

    Article  PubMed  CAS  Google Scholar 

  163. Dole VP. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 1956;35:150–154.

    Article  PubMed  CAS  Google Scholar 

  164. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785–789.

    Article  PubMed  CAS  Google Scholar 

  165. Elphick MC. Some aspects of fat and carbohydrate metabolism in the newborn. PhD thesis, London, 1972.

    Google Scholar 

  166. Wadstrom LB. Plasma lipids and surgical trauma: a methodological, experimental and clinical study. Acta Chir Scand [Suppl] 1959;238:1–19.

    Google Scholar 

  167. Gordon RS, Cherkes A. Unesterified fatty acid in human blood plasma. J Clin Invest 1956;35:206–212.

    Article  PubMed  CAS  Google Scholar 

  168. Steinberg D. Catecholamine stimulation of fat mobilization and its metabolic consequences. Pharmacol Rev 1966;18:217–235.

    PubMed  CAS  Google Scholar 

  169. Vaughan M, Steinberg D. Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J Lipid Res 1963;4: 193–199.

    PubMed  CAS  Google Scholar 

  170. Steinberg D. Fatty acid mobilization—mechanisms of regulation and metabolic consequences. In Grant JK, ed: The Control of Lipid Metabolism. Orlando: Academic Press, 1963;111–143.

    Google Scholar 

  171. Carlson LA, Liljedahl SO. Lipid metabolism and trauma. Acta Med Scand 1963;173:25–34.

    Article  PubMed  CAS  Google Scholar 

  172. Bogdonoff MD, Estes EH, Trout D. Acute effect of physiologic stimuli upon plasma nonesterified fatty acid level. Proc Soc Exp Biol Med 1959;100:503–504.

    PubMed  CAS  Google Scholar 

  173. Fomon SJ, Haschke F, Zeigler EE, et al. Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982;35:1169–1175.

    PubMed  CAS  Google Scholar 

  174. Bessey PQ, Watters JM, Aoki TT, et al. Combined hormonal infusion stimulates the metabolic response to injury. Ann Surg 1984;200:264–281.

    Article  PubMed  CAS  Google Scholar 

  175. Elliott M, Albert KGMM. The hormonal and metabolic response to surgery and trauma. In Kleinberger G, Deutsch E, eds: New Aspects of Clinical Nutrition. Basel: Karger, 1983;247–270.

    Google Scholar 

  176. Kerri-Szanto M. Demand analgesia. Br J Anesth 1983;55:919–920.

    Article  Google Scholar 

  177. Brandt MR, Fernandez A, Mordhurst R, et al. Epidural analgesia improves postoperative nitrogen balance. Br Med J 1978;1:1106–1108.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schmeling, D.J., Coran, A.G. (1991). Metabolism of the Neonate Requiring Surgery. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_36

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics