Skip to main content
  • 358 Accesses

Abstract

Until 1961 all neonates with birth weights of 2500 g or less were considered to have been born prematurely. Only after this time did it become recognized that birth weight could be discordant with gestational age, and neonates were classified as appropriate (AGA), small (SGA), or large for gestational age (LGA).1 This chapter reviews some of the mechanisms responsible for intrauterine growth retardation and focuses on the metabolic morbidities to which the SGA neonate is prone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Public health aspects of low birth weight. WHO Techn Rep Ser 1961;217:32–35.

    Google Scholar 

  2. Stein ZA, Susser M. Intrauterine growth retardation: epidemiological issues and public health significance. Semin Perinatol 1984;8:5–14.

    PubMed  CAS  Google Scholar 

  3. Gruenwald P. Infants of low birth weight among 5000 deliveries. Pediatrics 1964;34:157–168.

    PubMed  CAS  Google Scholar 

  4. Sabbagha RE. Intrauterine growth retardation. In Sabbagha RE, ed: Ultrasound Applied to Obstetrics and Gynecology. Philadelphia: Lippincott, 1987; 112–131.

    Google Scholar 

  5. Wark L, Malcolm LA. Growth and development of the Lumi child in the Sepik district of New Guinea. Med J Aust 1969;2:129–138.

    PubMed  CAS  Google Scholar 

  6. Aschroft MT, Buchanan IC, Lovell HG, et al. Growth of infants and preschool children in St. Christopher-Nevis-Anguilla West Indies. Am J Clin Nutr 1966;19:37–59.

    Google Scholar 

  7. Ouellette EM, Rosett HC, Rosman NP, et al. Adverse effects on offspring of maternal alcohol abuse during pregnancy. N Engl J Med 1977;297:528–530.

    Article  PubMed  CAS  Google Scholar 

  8. Hill RDG. Insulin as a growth factor. Pediatr Res 1985; 19:879–886.

    Article  PubMed  CAS  Google Scholar 

  9. Freinkel N. Of pregnancy and progeny. Diabetes 1980; 29:1023–1035.

    Article  PubMed  CAS  Google Scholar 

  10. Schiff P, Colle E, Stern L. Metabolic and growth patterns in transient neonatal diabetes. N Engl J Med 1972;287:119–124.

    Article  PubMed  CAS  Google Scholar 

  11. Gewolb IH, Warshaw JB. Influences on fetal growth. In Warshaw JB, ed: The Biological Basis of Reproductive and Developmental Medicine. New York: Elsevier, 1983;364–389.

    Google Scholar 

  12. Ashton IK, Vesey J. Somatomedin activity in human cord plasma and relationship to birth size, insulin, growth hormone, and prolactin. Early Hum Dev 1978; 2:115–122.

    Article  PubMed  CAS  Google Scholar 

  13. Ashworth MA, Leach FW, Milner RDG. Development of insulin secretion in the human fetus. Arch Dis Child 1973;48:151–156.

    Article  PubMed  CAS  Google Scholar 

  14. Ogata ES, Collins JW, Finley S. Insulin injection in the fetal rat: accelerated intrauterine growth and altered fetal and neonatal glucose homeostasis. Metabolism 1988;37:649–655.

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan SL, Underwood LE. Clinical studies with recombinant DNA derived methionyl human growth hormone in growth hormone deficient children. Lancet 1986;1:697–701.

    Article  PubMed  CAS  Google Scholar 

  16. Hall K, Sara VR. Growth and somatomedins. Vitam Horm 1983;40:175–253.

    Article  PubMed  CAS  Google Scholar 

  17. Romanus J, Terrel J, Yang Y. Insulin-like growth factor carrier proteins in neonatal and adult rat serum are immunologically different: demonstration using a new radioimmunoassay for the carrier protein from BRL-3A rat liver cells. Endocrinology 1986;118:1743–1758.

    Article  PubMed  CAS  Google Scholar 

  18. D’Ercole AJ, Stiles A, Underwood L. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine of autocrene mechanisms of action. Proc Natl Acad Sci USA 1989;81: 935–939.

    Article  Google Scholar 

  19. Vileisis R, D’Ercole J. Limited somatomedin C in growth retarded rats. Pediatr Res 1986;20:126–130.

    Article  PubMed  CAS  Google Scholar 

  20. Barr M, Jensch R, Brent R. Prenatal growth in the albino rat: effects of number, intrauterine position, and resorption. Am J Anat 1970;128:413–428.

    Article  PubMed  Google Scholar 

  21. Ogata ES, Finley S. Selective ligation of uterine artery branches accelerates fetal growth in the rat. Pediatr Res 1988;24:384–390.

    Article  PubMed  CAS  Google Scholar 

  22. Wigglesworth JS. Experimental growth retardation in the foetal rat. J Pathol Bacteriol 1964;88:1–13.

    Article  PubMed  CAS  Google Scholar 

  23. Creasy RK, Barrett CT, deSwiet M, et al. Experimental intrauterine growth retardation in the sheep. Am J Obstet Gynecol 1972;112:566–574.

    PubMed  CAS  Google Scholar 

  24. Chase HP, Dabiere CS, Welch NN, et al. Intrauterine undernutrition and brain development. Pediatrics 1971;41:491–498.

    Google Scholar 

  25. Ogata ES, Paul RI, Finley SL. Limited maternal fuel availability due to hyperinsulinemia retards fetal growth and development in the rat. Pediatr Res 1987;22:432–437.

    Article  PubMed  CAS  Google Scholar 

  26. Ogata ES, Bussey M, Finley S. Altered gas exchange, limited glucose and branched chain amino acids and hypoinsulinism retard fetal growth in the rat. Metabolism 1988;37:649–655.

    Article  PubMed  CAS  Google Scholar 

  27. Sibai B, Andersen G. Pregnancy outcome of intensive therapy in severe hypertension in first trimester. Obstet Gynecol 1986;67:517–523.

    PubMed  CAS  Google Scholar 

  28. Pedersen JF, Molsted Pedersen L, Mortensen HB. Fetal growth delay and maternal hemoglobin Aic in early diabetic pregnancy. Obstet Gynecol 1984;64:351–352.

    PubMed  CAS  Google Scholar 

  29. Ravelli GP, Stein ZA, Susser MA. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295:349–353.

    Article  PubMed  CAS  Google Scholar 

  30. Khouzami V, Ginshang DS, Daikoku NH, et al. The glucose tolerance test as a means of identifying intrauterine growth retardation. Am J Obstet Gynecol 1981;139: 423–430.

    PubMed  CAS  Google Scholar 

  31. Sokol RD, Kazzi GH, Kalhan S. Identifying the pregnancy at risk for intrauterine growth retardation: possible usefulness of the intravenous glucose tolerance test. Am J Obstet Gynecol 1982;143:220–223.

    PubMed  CAS  Google Scholar 

  32. Shelley NJ, Neligan GA. Neonatal hypoglycemia. Br Med Biol 1966;22:34–39.

    CAS  Google Scholar 

  33. Mestiyan J, Soltesz G, Schultz K, et al. Hyperamino-acidemia due to the accumulation of gluconeogenic precursors in the small for gestational age infant. N Engl J Med 1974;291:322–328.

    Article  Google Scholar 

  34. Williams PR, Fiser R, Sperling MA, et al. Effects of oral alanine feeding on blood glucose, plasma glucagon and insulin concentrations in small for gestational age infants. N Engl J Med 1975;292:612–614.

    Article  PubMed  CAS  Google Scholar 

  35. Kollee LAA, Monneus LAH, Tribels IMF, et al. Experimental intrauterine growth retardation in the rat: evaluation of the Wigglesworth model. Early Hum Dev 1979;3:295–300.

    Article  PubMed  CAS  Google Scholar 

  36. Bussey M, Finley S, Ogata ES: Hypoglycemia in the newborn growth retarded rat: delayed phospho-enolpyruvate carboxykinase induction despite increased glucagon availability. Pediatr Res 1985; 19: 363–367.

    Article  PubMed  CAS  Google Scholar 

  37. Sabel K, Olegard R, Victorn I. Interrelation between fatty acid oxidation and control of gluconeogenic substrates in small-for-gestational age (SGA) infants with hypoglycemia and with normoglycemia. Acta Paediatr Scand 1982;71:53–62.

    Article  PubMed  CAS  Google Scholar 

  38. Sinclair JC, Silverman WA. Intrauterine growth in active tissue mass of the human fetus with particular reference to the undergrown baby. Pediatrics 1966; 38:48–57.

    PubMed  CAS  Google Scholar 

  39. Haymond MW, Karl IE, Pagliari AS. Ketotic hypoglycemia: an amino acid substrate limited disorder. J Clin Endocrinol Metab 1975;42:846–853.

    Article  Google Scholar 

  40. Ogata ES, Bussey M, Finley S, et al. Altered growth, hypoglycemia, hypoalaninemia, and ketonemia in the young rat: postnatal consequences of intrauterine growth retardation. Pediatr Res 1985;19:32–37.

    Article  PubMed  CAS  Google Scholar 

  41. Yao A, Lind J. Placental transfusion. Am J Dis Child 1974;27:128–136.

    Google Scholar 

  42. Fitzhardinge P, Stevens E. The small for date infant. I. Later growth patterns. Pediatrics 1972;49:671–678.

    PubMed  CAS  Google Scholar 

  43. Fitzhardinge P, Steven E. The small for date infant. II. Neurological and intellectual sequelae. Pediatr Res 1972;50:50–56.

    CAS  Google Scholar 

  44. Westwood M, Kramer M, Munoz D, et al. Growth and development of full-term non-asphyxiated small for gestational age newborns: follow-up through adolescence. Pediatrics 1983;71:376–382.

    PubMed  CAS  Google Scholar 

  45. Commey MB, Fitzhardinge PM. Handicap in the preterm small for gestational age infant. J Pediatr 1979;5: 779–786.

    Google Scholar 

  46. Vohr BR, Oh W, Rosenfield AG, et al. The preterm small for gestational age infant: a two-year follow-up study. Am J Obstet Gynecol 1979;133:425–431.

    PubMed  CAS  Google Scholar 

  47. Pena IC, Teberg AJ, Finello KM. The premature small-for-gestational age infant during the first year of life: comparison by birth weight and gestational age. J Pediatr 1988;113:1066–1073.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ogata, E.S. (1991). Small for Gestational Age Neonate. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_34

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics