Skip to main content

Neonatal Energy Metabolism

  • Chapter

Abstract

It is a characteristics of all living individuals that they continuously consume energy and produce heat. Chemical energy is converted into a form of energy that can be used by the individual. Subsequently this energy is used for maintenance of the body: contraction of heart muscle, excretion of products by liver and kidney, and so on. The energy used for these processes is finally given off as heat. Energy can be used for activity and external work. All energy used for activity is given off as heat, and during the process of external work, part of the energy consumed is given off as heat. When the individual is nursed outside the thermoneutral environment (vide infra), energy is used especially for heat production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavoisier AL, Laplace PS. Mémoire sur la chaleur. Mem Math Phys Acad Sci, 1780. Cited by Hull D, Smales ORC. In Sinclair JC, ed: Temperature Regulation and Energy Metabolism in the Newborn. Orlando: Grune & Stratton, 1978; 129–156.

    Google Scholar 

  2. Richet C. La Chaleur Animale. Bibliotheque Scientifique Internationale. Paris: Alcan, 1895.

    Google Scholar 

  3. Winslow CEA, Herrington LP, Gagge AR Physiological reactions of the human body to varying environmental temperatures. Am J Physiol 1937;120:1–22.

    CAS  Google Scholar 

  4. Spinnler G, Jéquier E, Favre R, et al. Human calorimeter with a new type of gradient layer. J Appl Physiol 1973;35:158–165.

    PubMed  CAS  Google Scholar 

  5. Day R, Hardy JD. Respiratory metabolism in infancy and in childhood. XXVI. A calorimeter for measuring the heat loss of premature infants. Am J Dis Child 1942;63:1086–1095.

    CAS  Google Scholar 

  6. Ryser G, Jéquier E. Study by direct calorimetry of thermal balance on the first day of life. Eur J Clin Invest 1972;2:176–187.

    Article  PubMed  CAS  Google Scholar 

  7. Dane HJ, Holland WPJ, Sauer PJJ, et al. A calorimet-ric system for metabolic studies of newborn infants. Clin Phys Physiol Meas 1985;6:36–46.

    Article  Google Scholar 

  8. Sauer PJJ, Dane HJ, Visser HKA. Longitudinal studies on metabolic rate, heat loss, and energy cost of growth in low birth weight infants. Pediatr Res 1984; 18:254–259.

    Article  PubMed  CAS  Google Scholar 

  9. Silverman WA, Agate FJ Jr. Variation in cold resistance among small newborn infants. Biol Neonate 1964;6:113–127.

    Article  CAS  Google Scholar 

  10. Webb P, Annis JF, Troutman SJ Jr. Human calorimetry with a water-cooled garmet. J Appl Physiol 1972;32: 412–418.

    PubMed  CAS  Google Scholar 

  11. Webb P, Annis JF, Troutman SJ Jr. Energy balance in man measured by direct and indirect calorimetry. Am J Clin Nutr 1980;33:1287–1298.

    PubMed  CAS  Google Scholar 

  12. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 1983;55: 628–634.

    PubMed  CAS  Google Scholar 

  13. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988;37:287–301.

    Article  PubMed  CAS  Google Scholar 

  14. Elia M, Livesey G. Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 1988;47:591–607.

    PubMed  CAS  Google Scholar 

  15. Simonson DC, DeFronzo RA. Indirect calorimetry: methodological and interpretative problems. Am J Physiol 1990;258:E399-E412.

    PubMed  CAS  Google Scholar 

  16. Lusk G. Analysis of the oxidation of carbohydrate and fat. J Biol Chem 1924;54:41–42.

    Google Scholar 

  17. Bursztein S, Saphar P, Singer P, et al. A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 1989;50:227–230.

    PubMed  CAS  Google Scholar 

  18. Abdulrazzaq YM, Brooke OG. Respiratory metabolism in preterm infants; the measurement of oxygen consumption during prolonged periods. Pediatr Res 1984;18:928–931.

    PubMed  CAS  Google Scholar 

  19. Schulze K, Kairam R, Stefanski M, et al. Spontaneous variability in minute ventilation oxygen consumption and heart rate of low birth weight infants. Pediatr Res 1981;15:1111–1116.

    PubMed  CAS  Google Scholar 

  20. Marks KH, Nardis EE, Derr JA. Day-to-day energy expenditure variability in low birth weight neonates. Pediatr Res 1987;21:66–71.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts SB, Murgatroyd PR, Crisp JA. Long-term variation in oxygen consumption rate in preterm infants. Biol Neonate 1987;52:1–8.

    PubMed  CAS  Google Scholar 

  22. Freymond D, Schutz Y, Decombaz J, et al. Energy balance, physical activity, and thermogenic effect of feeding in premature infants. Pediatr Res 1986;20:638–645.

    Article  PubMed  CAS  Google Scholar 

  23. Bligh J, Johnson KG. Glossary of terms for thermal physiology. J Appl Physiol 1973;35:941–961.

    PubMed  CAS  Google Scholar 

  24. Dane HJ, Sauer PJJ, Visser HKA. Oxygen consumption and CO2 production of low-birth-weight infants in two sleep states. Biol Neonate 1985;47:205–210.

    Article  PubMed  CAS  Google Scholar 

  25. Hey EN. The relation between environmental temperature and oxygen consumption in the newborn baby. J Physiol (Lond) 1969;200:589–603.

    CAS  Google Scholar 

  26. Stothers JK, Warner RM. Oxygen consumption and neonatal sleep states. J Physiol (Lond) 1978;278: 435–440.

    CAS  Google Scholar 

  27. Chessex P, Reichman BL, Verellen GJE, et al. Relation between heart rate and energy expenditure in the newborn. Pediatr Res 1981;15:1077–1082.

    PubMed  CAS  Google Scholar 

  28. Lifson N, Gordon GB, McClintock R. Measurement of total carbon dioxide production by means of D2 18O. J Appl Physiol 1955;7:704–710.

    PubMed  CAS  Google Scholar 

  29. Lifson N, Little WS, Levitt DG, et al. D2 18O method for CO2 output in small mammals and economic feasibility in man. J Appl Physiol 1975;39–4:657–664.

    Google Scholar 

  30. Schoeller DA. Energy expenditures from doubly labeled water: some fundamental considerations in humans. Am J Clin Nutr 1983;38:999–1005.

    PubMed  CAS  Google Scholar 

  31. Schoeller DA, Webb P. Five-day comparison of the doubly labeled water method with respiratory gas exchange. Am J Clin Nutr 1984;40:153–158.

    PubMed  CAS  Google Scholar 

  32. Klein PD, James WPT, Wong WW, et al. Calorimetric validation of the doubly-labelled water method for determination of energy expenditure in man. Hum Nutr Clin Nutr 1984;38C:95–106.

    CAS  Google Scholar 

  33. Jones PJH, Winthrop AL, Schoeller DA, et al. Validation of doubly labeled water for assessing energy expenditure in infants. Pediatr Res 1987;21:242–246.

    Article  PubMed  CAS  Google Scholar 

  34. Roberts SB, Coward WA, Schlingenseipen KH, et al. Comparison of the doubly labeled water (2H2 18O) method with indirect calorimetry and a nutrient-balance study for simultaneous determination of energy expenditure, water intake and metabolizable energy intake in preterm infants. Am J Clin Nutr 1986;44:315–322.

    PubMed  CAS  Google Scholar 

  35. Jones PJH, Winthrop AL, Schoeller DA, et al. Evaluation of doubly labeled water for measuring energy expenditure during changing nutrition. Am J Clin Nutr 1988;47:799–804.

    PubMed  CAS  Google Scholar 

  36. Westerterp KR, Lafeber HN, Sulkers E, et al. Doubly labeled water and respirometry for assessing energy expenditure in young infants. Submitted for publication, Biol Neonate 1991 (in press).

    Google Scholar 

  37. Pittet Ph, Gygax PH, Jéquier E. Thermic effect of glucose and amino acids in man studied by direct and indirect calorimetry. Br J Nutr 1974;31:343–349.

    Article  PubMed  CAS  Google Scholar 

  38. Bell AW, Battaglia FC, Meschia G. Relation between metabolic rate and body size in the ovine fetus. J Nutr 1987;117:1181–1186.

    PubMed  CAS  Google Scholar 

  39. Bell AW, Kennaugh JM, Battaglia FC et al. Metabolic and circulatory studies of fetal lamb at midgestation. Am J Physiol 1986;250:E538–544.

    PubMed  CAS  Google Scholar 

  40. Romney SL, Reid DE, Metcalfe J, et al. Oxygen utilization by the human fetus in utero. Am J Obstet Gynecol 1955;70:791–799.

    PubMed  CAS  Google Scholar 

  41. Sparks JW, Girard JR, Battaglia FC. An estimate of the caloric requirements of the human fetus. Biol Neonate 1980;38:113–119.

    Article  PubMed  CAS  Google Scholar 

  42. Bonds DR, Crosby LO, Cheek TG, et al. Estimation of human fetal-placental unit metabolic rate by application of the Bohr principle. J Dev Physiol 1986;8: 49–54.

    PubMed  CAS  Google Scholar 

  43. Bozetti P, Buscaglia M, Cetin I, et al. Respiratory gases, acid-base balance and lactate concentrations of the midterm human fetus. Biol Neonate 1987;51: 188–197.

    Google Scholar 

  44. Economides DL, Nicolaides KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am J Obstet Gynecol 1989;160:385–389.

    PubMed  CAS  Google Scholar 

  45. Huikeshoven FJ, Hope ID, Power GG, et al. Mathematical model of fetal circulation and oxygen delivery. Am J Physiol 1985;249:192–202.

    Google Scholar 

  46. Durnin JVGA, McKillop FM, Grant S, et al. Energy requirements of pregnancy in Scotland. Lancet 1987; 2:897–900.

    Article  PubMed  CAS  Google Scholar 

  47. Widdowson EM. Changes in body proportions and composition during growth. In Davis JA, Dobbing J, eds: Scientific Foundation of Paediatrics. London: Heineman, 1974; 153–163.

    Google Scholar 

  48. Ziegler EE, O’Donnell A, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth 1976; 40:329–341.

    PubMed  CAS  Google Scholar 

  49. Heim T. Energy and lipid requirements of the fetus and the preterm infant. J Pediatr Gastroenterol Nutr 1983;2(suppl 1):S16-S41.

    Article  PubMed  Google Scholar 

  50. Scopes JW, Ahmed I. Minimal rates of oxygen consumption in sick and premature newborn infants. Arch Dis Child 1966;41:407–416.

    Article  PubMed  CAS  Google Scholar 

  51. Hey EN. The relation between environmental temperature and oxygen consumption in the newborn baby. J Physiol (Lond) 1969;200:589–603.

    CAS  Google Scholar 

  52. Gentz J, Kellum M, Persson B. The effect of feeding on oxygen consumption, RQ and plasma levels of glucose, FFA and D-hydroxybutyrate in newborn infants of diabetic mothers and small-for-gesta-tional age infants. Acta Paediatr Scand 1976;65:445–454.

    Article  PubMed  CAS  Google Scholar 

  53. Chessex P, Reichman BL, Verellen GJE, et al. Influence of postnatal age, energy intake, and weight gain on energy metabolism in the very low-birth-weight infant. J Pediatr 1981;99:761–766.

    Article  PubMed  CAS  Google Scholar 

  54. Gudinchet F, Schutz Y, Michelil JL, et al. Metabolic cost of growth in very low-birth-weight infants. Pediatr Res 1982;16:1025–1030.

    Article  PubMed  CAS  Google Scholar 

  55. van de Wagen A, Okken A, Zweens J, et al. Body composition at birth of growth-retarded newborn infants demonstrating catch-up growth in the first year of life. Biol Neonate 1986;49:121–125.

    Article  Google Scholar 

  56. Bhakoo ON, Scopes JW. Minimal rates of oxygen consumption in small-for-dates babies during the first week of life. Arch Dis Child 1974;49:583–585.

    Article  PubMed  CAS  Google Scholar 

  57. Horton ES. Introduction: an overview of the assessment and regulation of energy balance in humans. Am J Clin Nutr 1983;38:972–977.

    PubMed  CAS  Google Scholar 

  58. Brooke OG. Energy balance and metabolic rate in preterm infants fed with standard and high-energy formulas. Br J Nutr 1980;44:13–23.

    Article  PubMed  CAS  Google Scholar 

  59. Van Aerde J. Intravenous nutritional energy support and macronutrient utilization in the neonate. Acta Biomed Lovaniensia 1990;22:94–102.

    Google Scholar 

  60. Van Aerde J. Acute respiratory failure and bronchopulmonary dysplasia, in Hay W, ed: Neonatal Nutrition and Metabolism. St. Louis: Mosby-Yearbook, 1991:476–506.

    Google Scholar 

  61. Kashyap S, Forsyth M, Zucker C, et al. Effects of varying protein and energy intakes on growth and metabolic response in low birth weight infants. J Pediatr 1986;108:955–963.

    Article  PubMed  CAS  Google Scholar 

  62. Kashyap S, Schulze KF, Forsyth M, et al. Growth, nutrient retention, and metabolic response in low birth weight infants fed varying intakes of protein and energy. J Pediatr 1988;113:713–721.

    Article  PubMed  CAS  Google Scholar 

  63. Schulze K, Stefanski M, Masterson J, et al. Energy expenditure, energy balance, and composition of weight gain in low birth weight infants fed diets of different protein and energy content. J Pediatr 1987;110:753–759.

    Article  PubMed  CAS  Google Scholar 

  64. Bell EF, Rios GR, Ungs CA, et al. Influence of energy and protein intake on energy utilization and body composition of small premature infants. Pediatr Res 1988;23:479A.

    Google Scholar 

  65. Weinstein MR, Hanger K, Bauer JH, et al. Intravenous energy and aminoacids in the preterm newborn infant: effects on metabolic rate and potential mechanism of action. J Pediatr 1987;111:119–123.

    Article  PubMed  CAS  Google Scholar 

  66. Reichman B, Chessex Ph, Putet G, et al. Diet, fat accretion, and growth in premature infants. N Engl J Med 1981;305:1495–1500.

    Article  PubMed  CAS  Google Scholar 

  67. Brooke OG, Wood C, Barley J. Energy balance, nitrogen balance, and growth in preterm infants fed expressed breast milk, a premature infant formula, and two low-solute adapted formulae. Arch Dis Child 1982;57:898–904.

    Article  PubMed  CAS  Google Scholar 

  68. Chessex P, Reichman B, Verellen G, et al. Quality of growth in premature infants fed their own mothers’ milk. J Pediatr 1983;102:107–112.

    Article  PubMed  CAS  Google Scholar 

  69. Reichman B, Chessex P, Verellen G, et al. Dietary composition and macronutrient storage in preterm infants. Pediatrics 1983;72:322–328.

    PubMed  CAS  Google Scholar 

  70. Whyte RK, Haslam R, Vlainic C, et al. Energy balance and nitrogen balance in growing low birthweight infants fed human milk or formula. Pediatr Res 1983; 17:891–898.

    Article  PubMed  CAS  Google Scholar 

  71. Putet G, Senterre J, Rigo J, et al. Nutrient balance, energy utilization, and composition of weight gain in very-low-birth-weight infants fed pooled human milk or a preterm formula. J Pediatr 1984;105:79–85.

    Article  PubMed  CAS  Google Scholar 

  72. Van Aerde J, Sauer P, Heim T, et al. Can intrauterine weight gain and body composition be simulated in the formula fed low birth weight infant. Pediatr Res 1985; 19:164A.

    Google Scholar 

  73. Van Aerde J, Sauer P, Heim T, et al. Effect of medium chain triglyceride diet on energy and macronutrient utilization in the very low birth weight infant. Pediatr Res 1985;19:235A.

    Google Scholar 

  74. Brooke OG, Ashworth A. The influence of malnutrition on the postprandial metabolic rate and respiratory quotient. Br J Nutr 1972;27:407–415.

    Article  PubMed  CAS  Google Scholar 

  75. Roberts SB, Lucas A. The effects of two extremes of dietary intake on protein accretion in preterm infants. Early Hum Dev 1985;12:301–307.

    Article  PubMed  CAS  Google Scholar 

  76. Whyte RK, Campbell D, Stanhope R, et al. Energy balance in low birth weight infants fed formula of high or low medium chain triglyceride content. J Pediatr 1986;108:964–971.

    Article  PubMed  CAS  Google Scholar 

  77. Brooke OG, Onubogu O, Heath R, et al. Human milk and preterm formula compared for effects on growth and metabolism. Arch Dis Child 1987;62:917–923.

    Article  PubMed  CAS  Google Scholar 

  78. Putet G, Rigo J, Salle B, et al. Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very low birth weight infants. Pediatr Res 1987;21:458–461.

    Article  PubMed  CAS  Google Scholar 

  79. Schanler RJ, Garza C. Plasma amino acid differences in very low birth weight infants fed either human milk or whey-dominant cow milk formula. Pediatr Res 1987;21:301–305.

    Article  PubMed  CAS  Google Scholar 

  80. Sulkers EJ, Lafeber HN, Leunisse C, et al. Nitrogen and fat deposition in preterm infants fed a formula with 5 or 40% medium-chain triglycerides (MCT). Pediatrics 1990;28:300.

    Google Scholar 

  81. Danforth E. The role of thyroid hormones and insulin in the regulation of energy metabolism. Am J Clin Nutr 1983;38:1006–1017.

    PubMed  CAS  Google Scholar 

  82. Landsberg L, Young JB. The role of the sympathetic nervous system and catecholamines in the regulation of energy metabolism. Am J Clin Nutr 1983;38:1018–1024.

    PubMed  CAS  Google Scholar 

  83. Acheson KJ, Schutz Y, Bessard T, et al. Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. Am J Physiol 1984;246:E62-E70.

    PubMed  CAS  Google Scholar 

  84. Schwartz RS, Ravussin E, Massari M, et al. The thermic effect of carbohydrate versus fat feeding in man. Metabolism 1985;34:285–293.

    Article  PubMed  CAS  Google Scholar 

  85. King RFGJ, McMahon MJ, Almond DJ. Evidence for adaptive diet-induced thermogenesis in man during intravenous nutrition with hypertonic glucose. Clin Sci 1986;71:31–39.

    PubMed  CAS  Google Scholar 

  86. Chikenji T, Elwyn DH, Gil KM, et al. Effects of increasing glucose intake on nitrogen balance and energy expenditure in malnourished adult patients receiving parenteral nutrition. Clin Sci 1987;72:489–501.

    PubMed  CAS  Google Scholar 

  87. Yang H, Cree TC, Schalch DS. Effect of a carbohydrate-restricted, calorie-reduced diet on the growth of young rats and on serum growth hormone, somatomedins, total thyroxine and triiodothyronine, free T4 index, and total corticosterone. Metabolism 1987; 36:794–798.

    Article  PubMed  CAS  Google Scholar 

  88. Crabtree B, Newsholme EA. A systematic approach to describing and analyzing metabolic control systems. Trends Biochem Sci 1987;12:5–12.

    Article  Google Scholar 

  89. Miyoshi H, Shulman GI, Peters EJ, et al. Hormonal control of substrate cycling in humans. J Clin Invest 1988;81:1545–1555.

    Article  PubMed  CAS  Google Scholar 

  90. Shaw JHF, Wolfe RR. Glucose, fatty acid, and urea kinetics in patients with severe pancreatitis. Ann Surg 1986;204:665–672.

    Article  PubMed  CAS  Google Scholar 

  91. Shaw JHF, Wolfe RR. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Ann Surg 1989;209:63–72.

    Article  PubMed  CAS  Google Scholar 

  92. Jeevanandam M, Grote-Holman E, Chikenji T, et al. Effects of glucose on fuel utilization and glycerol turnover in normal and injured man. Crit Care Med 1990;18:125–135.

    Article  PubMed  CAS  Google Scholar 

  93. Pittet PH, Chappuis K, Acheson K, et al. Thermic effect of glucose in obese subjects studied by direct and indirect calorimetry. Br J Nutr 1976;35:281–292.

    Article  PubMed  CAS  Google Scholar 

  94. Schwartz RS, Halter JB, Bierman EL. Reduced thermic effect of feeding in obesity: role of norepinephrine. Metabolism 1983;32:114–117.

    Article  PubMed  CAS  Google Scholar 

  95. Felig P, Cunningham J, Levitt M, et al. Energy expenditure in obesity in fasting and postprandial state. Am J Physiol 1983;244:E45–51.

    PubMed  CAS  Google Scholar 

  96. Roberts SB, Savage J, Coward WA, et al. Energy expenditure and intake in infants born to lean and overweight mothers. N Engl J Med 1988;318:461–466.

    Article  PubMed  CAS  Google Scholar 

  97. Ashworth A. Metabolic rates during recovery from protein-calorie malnutrition: the need for a new concept of specific dynamic action. Nature 1969;223: 407–409.

    Article  PubMed  CAS  Google Scholar 

  98. Mestyan J, Járai I, Fekete M, et al. Specific dynamic action in premature infants kept at and below the neutral temperature. Pediatr Res 1969;3:41–50.

    PubMed  CAS  Google Scholar 

  99. Brooke OG, Alvear J, Arnold M. Energy retention, energy expenditure, and growth in health immature infants. Pediatr Res 1979;13:215–220.

    Article  PubMed  CAS  Google Scholar 

  100. Spady DW, Payne PR, Picou D, et al. Energy balance during recovery from malnutrition. Am J Clin Nutr 1976;29:1073–1078.

    PubMed  CAS  Google Scholar 

  101. Hommes FA. The energy requirement for growth: a reevaluation. Nutr Metab 1980;24:110–113.

    Article  PubMed  CAS  Google Scholar 

  102. Committee on Nutrition, American Academy of Pediatrics. Nutritional needs of low-birth-weight infants. Pediatrics 1977;60:519–530.

    Google Scholar 

  103. Askanazi J, Rosenbaum H, Michelson C, et al. Increased body temperature secondary to total parenteral nutrition. Crit Care Med 1980;8:736–737.

    Article  PubMed  CAS  Google Scholar 

  104. Norderstrom J, Carpentier Y, Askanazi J, et al. Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg 1982; 196: 221–231.

    Article  Google Scholar 

  105. Heymsfield S, Head A, McManus C, et al. Respiratory, cardiovascular and metabolic effects of enteral hyperalimentation: influence of formula, dose and composition. Am J Clin Nutr 1984;40:116–130.

    PubMed  CAS  Google Scholar 

  106. Van Aerde JEE, Sauer PJJ, Pencharz PB, et al. Effect of replacing glucose with lipid on the energy metabolism of newborn infants. Clin Sci 1989;76: 581–588.

    PubMed  Google Scholar 

  107. Chessex P, Gagne G, Pineault M, et al. Metabolic and clinical consequences of changing from high-glucose to high-fat regimens in parenterally fed newborn infants. J Pediatr 1989;115:992–997.

    Article  PubMed  CAS  Google Scholar 

  108. Geliebter A, Torbay N, Bracco EF, et al. Overfeeding with medium chain triglyceride diet results in diminished deposition of fat. Am J Clin Nutr 1983;37: 1–4.

    PubMed  CAS  Google Scholar 

  109. Hill JO, Peters JC, Yang D, et al. Thermogenesis in humans during overfeeding with medium-chain triglycerides. Metabolism 1989;38:641–648.

    Article  PubMed  CAS  Google Scholar 

  110. Sulkers EJ, Lafeber HN, Beaufrère B, et al. Glucose metabolism in preterm infants fed a 40% MCT or a LCT formula. Pediatr Res 1990;27:292A.

    Google Scholar 

  111. Sulkers EJ, Lafeber HN, Sauer PJJ. Quantitation of oxidation of medium-chain triglycerides in preterm infants. Pediatr Res 1989;26:294–297.

    Article  PubMed  CAS  Google Scholar 

  112. Sulkers EJ, Lafeber HN, Degenhart HJ, et al. Substrate utilization in low birth weight infants receiving total parenteral nutrition with high carnitine supplementation. Am J Clin Nutr 1990;52:889–894.

    PubMed  CAS  Google Scholar 

  113. Pencharz PB, Parsons M, Motil K, et al. Total body protein turnover and growth in children, is it a futile cycle? Med Hypotheses 1981;7:155–160.

    Article  PubMed  CAS  Google Scholar 

  114. Catzeflis C, Schutz Y, Micheli JL, et al. Whole body protein synthesis and energy expenditure in very low birth weight infants. Pediatr Res 1985;19:679–687.

    Article  PubMed  CAS  Google Scholar 

  115. Moore PB. Protein synthesis: elongation remodelled. Nature 1989;342:127–128.

    Article  PubMed  CAS  Google Scholar 

  116. Young VR, Marchini JS. Mechanisms and nutritional significance of metabolic responses to altered intakes of protein and amino acids, with reference to nutritional adaptation in humans. Am J Clin Nutr 1990; 51:270–289.

    PubMed  CAS  Google Scholar 

  117. Nelson KM, Long CL. Physiological basis for nutrition in sepsis. Nutr Clin Pract 1989;4:6–15.

    Article  PubMed  CAS  Google Scholar 

  118. Nutrition and the metabolic response to injury. Lancet 1989;Anonymous:995–997.

    Google Scholar 

  119. Jeevanandam M, Grote-Holman AE, Chikenji T, et al. Effects of glucose on fuel utilization and glycerol turnover in normal and injured man. Crit Care Med 1990; 18:125–135.

    Article  PubMed  CAS  Google Scholar 

  120. Levison H, Swyer PR. Oxygen consumption and the thermal environment in newly born infants. Biol Neonate 1964;7:305.

    Article  CAS  Google Scholar 

  121. Richardson P, Bose CL, Bucciarelli RL, et al. Oxygen consumption of infants with respiratory distress syndrome. Biol Neonate 1984;46:53–56.

    Article  PubMed  CAS  Google Scholar 

  122. Weinstein MR, Oh W. Oxygen consumption in infants with bronchopulmonary dysplasia. J Pediatr 1981;99: 958–961.

    Article  PubMed  CAS  Google Scholar 

  123. Yeh TF, McClenan DA, Ajayi OA, et al. Metabolic rate and energy balance in infants with bronchopulmonary dysplasia. J Pediatr 1989;114:448–451.

    Article  PubMed  CAS  Google Scholar 

  124. Yunis KA, Oh W. Effects of intravenous glucose, loading on oxygen consumption, carbon dioxide production and resting energy expenditure in infants with bronchopulmonary dysplasia. J Pediatr 1989; 115:127–132.

    Article  PubMed  CAS  Google Scholar 

  125. Kalhan SC, Denne SC. Energy consumption in infants with bronchopulmonary dysplasia. J Pediatr 1990; 116:662–664.

    Article  PubMed  CAS  Google Scholar 

  126. Frank L, Sosenko IRS. Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am Rev Respir Dis 1988; 138:725–729.

    PubMed  CAS  Google Scholar 

  127. Lucas A, Nohria V, Roberts SB. Measurement of carbon dioxide production rate in sick ventilated premature infants. Biol Neonate 1987;51:138–143.

    Article  PubMed  CAS  Google Scholar 

  128. Rubecz I, Mestyán J. The partition of maintenance energy expenditure and the pattern of substrate utilization in uterine malnourished newborn infants before and during recovery. Acta Paediatr Acad Sci Hung 1975;16:335–350.

    PubMed  CAS  Google Scholar 

  129. Reichman BL, Chessex B, Putet G, et al. Partition of energy metabolism and energy cost of growth in the very low birth weight infant. Pediatrics 1982;69:446–451.

    PubMed  CAS  Google Scholar 

  130. Stabell U, Junge M, Fenner A. Metabolic rate and O2 consumption in newborns during different states of vigilance. Biol Neonate 1977;31:27–31.

    Article  PubMed  CAS  Google Scholar 

  131. Chessex P, Reichman B, Verellen G, et al. Metabolic consequences of intrauterine growth retardation in very low birth weight infants. Pediatr Res 1984; 18: 709–713.

    Article  PubMed  CAS  Google Scholar 

  132. Abdulrazzaq YM, Brooke OG. Is the raised metabolic rate of the small for gestation infant due to his relatively large brain size. Early Hum Dev 1988; 16:253–261.

    Article  PubMed  CAS  Google Scholar 

  133. Davidson M, Bauer CH. Pattern of fat excretion in feces of premature infants fed various preparations of milk. Pediatrics 1960;25:375–384.

    PubMed  CAS  Google Scholar 

  134. Zoula J, Melichar V, Novak M, et al. Nitrogen and fat retention in premature infants fed breast milk, “humanized” cows milk or half skimmed cows milk. Acta Pediatr Scand 1966;55:26–32.

    Article  CAS  Google Scholar 

  135. Tantibhedhyangkul P, Hashim SA. Medium chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption. Pediatrics 1975;55:359–369.

    PubMed  CAS  Google Scholar 

  136. Roy CC, Ste-Marie M, Chartrand L, et al. Correction of the malabsorption of the preterm infant with a medium chain triglyceride formula. J Pediatr 1975; 86:446–450.

    Article  PubMed  CAS  Google Scholar 

  137. Chappell JE, Clandinin MT, Kearney-Volpe C, et al. Fatty acid balance studies in premature infants fed human milk or formula: effect of calcium supplementation. J Pediatr 1986;108:439–447.

    Article  PubMed  CAS  Google Scholar 

  138. Huston RK, Reynolds JW, Jensen C, et al. Nutrient and mineral retention and vitamin D absorption in low birth weight infants: effect of medium-chain triglycerides. Pediatrics 1983;72:44–48.

    PubMed  CAS  Google Scholar 

  139. Hamosh M, Bitman J, Liao TH. Gastric lipolysis and fat absorption in preterm infants: effect of medium-chain triglyceride or long-chain triglyceride-contain-ing formulas. Pediatrics 1989;83:86–92.

    PubMed  CAS  Google Scholar 

  140. Zlotkin CH, Bryan MH, Anderson GH. Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurily born human infants. J Pediatr 1981;99:115–120.

    Article  PubMed  CAS  Google Scholar 

  141. Baker JP, Detsky AS, Stewart S, et al. Randomized trial of total parenteral nutrition in critically ill patients: metabolic effects of varying glucose-lipid ratios as the energy source. Gastroenterology 1984; 87:53–59.

    PubMed  CAS  Google Scholar 

  142. Pineault M, Chessex P, Bisaillon S, et al. Total parenteral nutrition in the newborn: impact of the quality of infused energy on nitrogen metabolism. Am J Clin Nutr 1988;47:298–304.

    PubMed  CAS  Google Scholar 

  143. Heird WC, Hay W, Helms RA, et al. Pediatric parenteral amino acid mixture in low birth weight infants. Pediatrics 1988;81:41–50.

    PubMed  CAS  Google Scholar 

  144. Pencharz P, Beesley J, Sauer P, et al. Total-body protein turnover in parenterally fed neonates: effects of energy source studied by using [15N]glycine and [1–13C]leucine. Am J Clin Nutr 1989;50:1395–1400.

    PubMed  CAS  Google Scholar 

  145. De Curtis M, Brooke OG. Energy and nitrogen balances in very low birth weight infants. Arch Dis Child 1987;62:830–832.

    Article  PubMed  Google Scholar 

  146. Heird WC, Kashyap S. Protein and energy requirement of low birth weight infants. Acta Pediatr Scand [Suppl] 1989;351:13–23.

    Article  CAS  Google Scholar 

  147. Van Goudoever JB, Van Lingen RA, Sulkers EJ, et al. Effect of early aminoacid administration on protein metabolism during total parenteral nutrition in preterm infants. Clin Sci (in press).

    Google Scholar 

  148. De Gamarra ME, Schutz Y, Catzeflis C, et al. Composition of weight gain during the neonatal period and longitudinal growth follow-up in premature babies. Biol Neonate 1987;52:181–187.

    Article  PubMed  Google Scholar 

  149. Committee on Nutrition American Academy of Pediatrics. Nutritional needs of low birth weight infants. Pediatrics 1985;75:976–986.

    Google Scholar 

  150. Lucas A. Does early diet program future outcome? Acta Pediatr Scand [Suppl] 1990;365:58–67.

    Article  CAS  Google Scholar 

  151. Lewis DS, Bertaut HA, McMahon A, et al. Prewean-ing food intake influences the adiposity of young adult baboons. J Clin Invest 1986;78:899–905.

    Article  PubMed  CAS  Google Scholar 

  152. Viikari J, Akerblom HK, Räsänen L, et al. Cardiovascular risk in young Finns. Acta Pediatr Scand [Suppl] 1990;365:13–19.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sauer, P.J.J. (1991). Neonatal Energy Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics