Skip to main content

Abstract

A trace element is defined arbitrarily as an element that is present at a concentration of less than 100 parts per million (i.e., 100 μg/g or 100 mg/kg).1 At least nine elements (iron, zinc, copper, manganese, cobalt, chromium, selenium, molybdenum, and iodine) have proven to be essential. Additional studies in animal models have suggested that other elements, (e.g., fluorine, nickel, tin, vanadium, silicon, arsenic, cadmium, lead, boron, and bromine), may be necessary for optimum health. This discussion focuses on the initial group of elements that have the highest potential relevance for the neonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mertz W. Underwood’s Trace Elements in Human and Animal Nutrition, 4th ed. London: Academic Press, 1986.

    Google Scholar 

  2. Bothwell TH, Charlton RW, Cook JD, et al. Iron Metabolism in Man. Oxford: Blackwell, 1979.

    Google Scholar 

  3. Hercberg S, Galan P. Biochemical effects of iron deprivation. Acta Paediatr Scand [Suppl 361] 1989;63–70.

    Google Scholar 

  4. Flanagan PR. Mechanisms and regulation of intestinal uptake and transfer of iron. Acta Paediatr Scant [Suppl 361] 1989;21–30.

    Google Scholar 

  5. Brock JH. Iron-binding proteins. Acta Paediatr Scand [Suppl 361] 1989;31–43.

    Google Scholar 

  6. Fairweather-Tait SJ, Balmer SE, Scott PH, et al. Lactoferrin and iron absorption in newborn infants. PediatrRes 1987;22:651–654.

    CAS  Google Scholar 

  7. Conrad ME, Umbriet JN, Moore EG, et al. A newly identified iron binding protein in duodenal mucosa of cats: purification and characterization of mobilferrin. J Biol Chem 1990;265:5273–5279.

    PubMed  CAS  Google Scholar 

  8. De Jong G, Van Eijk HG. Functional properties of the carbohydrate moiety of human transferrin. Int J Biochem 1989;21:253–263.

    PubMed  Google Scholar 

  9. Anonymous. Transferrin and cell membrane transport of iron. Nutr Rev 1984;42:24–26.

    Google Scholar 

  10. Price DJ, Joshi JG. Ferritin: binding of beryllium and other divalent metal ions. J Biol Chem 1983;258: 10873–10880.

    PubMed  CAS  Google Scholar 

  11. Joshi JG, Zimmerman A. Ferritin: an expanded role in metabolic regulation. Toxicity 1988;48:21–29.

    CAS  Google Scholar 

  12. Chesters JK, Arthur JR. Early biochemical defects caused by dietary trace element deficiencies. Nutr Res Rev 1988;1:39–56.

    PubMed  CAS  Google Scholar 

  13. Hibbard BM. Iron and folate supplements during pregnancy: supplementation in valuable only for selected patients. Br Med J 1988;297:1324–1326.

    CAS  Google Scholar 

  14. Van Djik JP Review article: regulatory aspects of placental iron transfer—a comparative study. Placenta 1988;9:215–226.

    Google Scholar 

  15. Sturgeon P. Studies of iron requirements in infants. III. Influence of supplemental iron during pregnancy on mother and infant. Br J Haematol 1959;5:45–55.

    PubMed  CAS  Google Scholar 

  16. Rios E, Lipschitz DA, Cook JD, et al. Relationship of maternal and infant iron stores as assessed by determination of plasma ferritin. Pediatrics 1975;55: 694–699.

    PubMed  CAS  Google Scholar 

  17. Dallman PR. Nutritional anaemia of infancy, iron, folic acid and B12. In Tsang RC, Nichols BL, eds: Nutrition During Infancy. Philadelphia: Hanley & Belfus, 1988;216–235.

    Google Scholar 

  18. Widdowson EM, Dickerson JWT. Chemical composition of the body. In Comar CL, Bronner F, eds: Mineral Metabolism. Vol. 2. Orlando: Academic Press, 1961.

    Google Scholar 

  19. Josephs HW. Iron metabolism and the hypochrome anaemia of infancy. Medicine (Baltimore) 1953;32: 125–157.

    CAS  Google Scholar 

  20. Siimes MA, Addegio JE, Dallman PR. Ferritin in serum: diagnosis of iron deficiency and iron overload in infants and children. Blood 1974;43:581–590.

    PubMed  CAS  Google Scholar 

  21. Owen GM, Garry PJ, Hooper EM, et al. Iron nutriture of infants exclusively breast fed the first five months. J Pediatr 1981;99:237–240.

    PubMed  CAS  Google Scholar 

  22. Siimes MA, Salmenpera L, Perheentupa J. Exclusive breast feeding for 9 months: risk of iron deficiency. J Pediatr 1984;104:196–199.

    PubMed  CAS  Google Scholar 

  23. Siimes MA, Jarvenpaa A-L. Prevention of anaemia and iron deficiency in very low birth weight infants. J Pediatr 1982;101:277–280.

    PubMed  CAS  Google Scholar 

  24. Vuori E. Intake of copper, iron, manganese and zinc by healthy, exclusively breast-fed infants during the first three months of life. Br J Nutr 1979;42:407–411.

    PubMed  CAS  Google Scholar 

  25. Siimes MA, Vuori E, Kuitunen P. Breast milk iron—a declining concentration during the course of lactation. Acta Paediatr Scand 1979;68:29–31.

    PubMed  CAS  Google Scholar 

  26. Franson G-B, Lonnerdal B. Iron in human milk. J Pediatr 1980;96:380–384.

    Google Scholar 

  27. Vuori E, Makinen SM, Kara R, et al. The effects of the dietary intakes of copper, iron, manganese and zinc on the trace element content of milk. Am J Clin Nutr 1980;33:227–231.

    PubMed  CAS  Google Scholar 

  28. Dauncey MJ, Davies CG, Shaw JCL, et al. Effect of iron supplements and blood transfusion on iron absorption by low birthweight infants fed pasteurised human breast milk. Pediatr Res 1978;12:899–904.

    PubMed  CAS  Google Scholar 

  29. Widdowson EM, Cavell PA. Intakes and excretions of iron, copper and zinc in the neonatal period. Arch Dis Child 1964;39:496–501.

    PubMed  Google Scholar 

  30. Heinrich HC, Bartels H, Gotze C, et al. Normal-bereich der intestinalen Eisenresorption bei Neugeborenen and Säuglingen. Klin Wochenschr 1969;47:984–991.

    PubMed  CAS  Google Scholar 

  31. Bender-Gotze C, Schmerlinski E, Heinrich HC. Cytochemie des Nichthaemoglobineisens in Knochenmarkzellen und intestinale Eisenresorption bei verschiedenen Anämien des Kindesalters. Monatsschr Kinderheilkd 1971;119:13–19.

    Google Scholar 

  32. Gotten MK, Hepner R, Workman JB. Iron metabolism in premature infants. J Pediatr 1963;63:1063–1071.

    Google Scholar 

  33. Fomon SJ, Ziegler EE, Nelson SE, et al. Cow’s milk feeding in infancy: gastrointestinal blood loss and iron nutritional status. J Pediatr 1981;98:540–545.

    PubMed  CAS  Google Scholar 

  34. Buchanan GR, Sheehan RG. Malabsorption and defective utilisation of iron in three siblings. J Pediatr 1981;98:725–728.

    Google Scholar 

  35. Goya N, Miyazaki S, Kodate S, et al. A family of congenital atransferrinemia. Blood 1972;40:239–245.

    PubMed  CAS  Google Scholar 

  36. Jaeken J, van Eijk HG, van der Heul C, et al. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognised genetic syndrome. Clin Chim Acta 1984;144:245–247.

    PubMed  CAS  Google Scholar 

  37. Shahidi NT, Nathan DE, Diamond LK. Iron deficiency anemia associated with an error of iron metabolism in two siblings. J Clin Invest 1964;43:510–521.

    PubMed  CAS  Google Scholar 

  38. Halliday JW. Inherited iron overload. Acta Paediatr Scand [Suppl 361] 1989;86–95.

    Google Scholar 

  39. Fracanzani AL, Fargion S, Romano R, et al. Immuno-histochemical evidence for a lack of ferritin in duodenal absorptive epithelial cells in idiopathic hemochromatosis. Gastroenterology 1989;96:1071–1078.

    Google Scholar 

  40. Edwards CQ, Griffen LM, Dadone MM, et al. Mapping the locus of hereditary haemochromatosis: localisation between HLA-B and HLA-A. Am J Hum Genet 1986;38:805–811.

    PubMed  CAS  Google Scholar 

  41. Silver MM, Beverly DW, Valberg LS, et al. Perinatal haemochromatosis: clinical, morphological and quantitative iron studies. Am J Pathol 1987;128: 538–551.

    PubMed  CAS  Google Scholar 

  42. Blisard KS, Bartow SA. Neonatal hemochromatosis. Hum Pathol 1986;17:376–383.

    PubMed  CAS  Google Scholar 

  43. Knisley AS. Neonatal haemachromatosis. J Pediatr 1988;113:871–874.

    Google Scholar 

  44. Mason KE. A conceptus of research on copper metabolism and requirements in man. J Nutr 1979;109: 1979–2066.

    PubMed  CAS  Google Scholar 

  45. Ciba Foundation Symposium 79. Biological Roles of Copper. Amsterdam: Elsevier, 1980.

    Google Scholar 

  46. Lash LL, Jones DP. Purification and properties of the membranal thiol oxidase form porcine kidney. Arch Biochem Biophys 1986;247:120–130.

    PubMed  CAS  Google Scholar 

  47. Eyre DR, Paz MA, Gallop PM. Crosslinking in collagen and elastin. Annu Rev Biochem 1984;53:717–748.

    PubMed  CAS  Google Scholar 

  48. Versieck J. Trace elements in human body fluids and tissues. CRC Crit Rev Clin Lab Sci 1985;22:97–184.

    CAS  Google Scholar 

  49. Horn N. Copper metabolism in Menkes’ disease. In Rennert OM, Chan W-Y, eds: Metabolism of Trace Metals in Man. Vol. 2. Boca Raton: CRC Press, 1984;25–52.

    Google Scholar 

  50. Sass-Kortsak A. Copper metabolism. Adv Clin Chem 1965;18:1–61.

    Google Scholar 

  51. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985;65: 238–309.

    PubMed  CAS  Google Scholar 

  52. O’Dell BL. Mineral interactions relevant to nutrient requirements. J Nutr 1989;119:1832–1838.

    PubMed  Google Scholar 

  53. Patterson WP, Winkelmann M, Perry MC. Zinc induced copper deficiency: megamineral sideroblastic anaemia. Ann Intern Med 1985;103:385–386.

    PubMed  CAS  Google Scholar 

  54. Hoogenraad TU, Van Hattum J, Van den Hamer CJA. Management of Wilson’s disease with zinc sulphate: experience in a series of 27 patients. J Neurol Sci 1987;77:137–146.

    PubMed  CAS  Google Scholar 

  55. Weiss KC, Linder MC. Copper transport in rats involving a new plasma protein. Am J Physiol 1985;249: E77–E88.

    PubMed  CAS  Google Scholar 

  56. Morgan WT. Interactions of the histidine-rich glycoprotein of serum with metals. Biochemistry 1981;20: 1054–1061.

    PubMed  CAS  Google Scholar 

  57. Ettinger MJ, Darwish HM, Schmitt RC. Mechanism of copper transport from plasma to hepatocytes. Fed Proc 1986;45:2800–2804.

    PubMed  CAS  Google Scholar 

  58. Bremner I. Involvement of metallothionein to the hepatic metabolism of copper. J Nutr 1987;117:19–29.

    PubMed  CAS  Google Scholar 

  59. Richards MP. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J Nutr 1989;119:1062–1070.

    PubMed  CAS  Google Scholar 

  60. Barrow L, Tanner MS. Copper distribution among serum proteins in paediatric liver disorders and malignancies. Eur J Clin Invest 1988;18:555–560.

    PubMed  CAS  Google Scholar 

  61. Kressner MS, Stockert RJ, Morell AG, et al. Origins of biliary copper. Hepatology 1984;4:867–870.

    PubMed  CAS  Google Scholar 

  62. Mistilis SP, Mearrick PT. The absorption of ionic, biliary and plasma radiocopper in neonatal rats. Scand J Gastroenterol 1969;4:691–696.

    PubMed  CAS  Google Scholar 

  63. Fell BR Pathological consequences of copper deficiency and cobalt deficiency. Philos Trans R Soc Lond [Biol] 1981;294:153–169.

    CAS  Google Scholar 

  64. Grunebaum M, Horodinceanu C, Steinherz R. The radiographic manifestations of bone changes with copper deficiency. Pediatr Radiol 1980;9:101–104.

    PubMed  CAS  Google Scholar 

  65. Blumenthal I, Lealman GT, Franklyn PP. Fracture of the femur, fish odour, and copper deficiency in a preterm infant. Arch Dis Child 1980;55:229–231.

    PubMed  CAS  Google Scholar 

  66. Prohaska JR, Heller LJ. Mechanical properties of the copper deficient rat heart. J Nutr 1982;112:2142–2150.

    PubMed  CAS  Google Scholar 

  67. Reiser S, Smith JC Jr, Mertz W, et al. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am J Clin Nutr 1985;42:242–251.

    PubMed  CAS  Google Scholar 

  68. Fell BF, King TP, Davies NT. Pancreatic atrophy in copper deficient rats: histochemical and ultrastructural evidence of a selective effect on acinar cells. Histochem J 1982;14:665–680.

    PubMed  CAS  Google Scholar 

  69. Allen DK, Hassel CA, Lei KY. Function of pituitary-thyroid axis in copper-deficient rats. J Nutr 1982;112: 2043–2046.

    PubMed  CAS  Google Scholar 

  70. Cornatzer WE, Haning JA, Klevay LM. The effect of copper deficiency on heart microsomal phosphatidylcholine biosynthesis and concentration. Int J Biochem 1986;18:1083–1087.

    PubMed  CAS  Google Scholar 

  71. Klevay LM, Inman L, Johnson LK, et al. Increased cholesterol in plasma in a young man during experimental copper depletion. Metabolism 1984;33: 1112–1118.

    PubMed  CAS  Google Scholar 

  72. Cunnane SC. Modulation of long chain fatty acid unsaturation by dietary copper. Adv Exp Biol Med 1989;258:183–195.

    CAS  Google Scholar 

  73. Bhathena SJ, Recant L, Voyles NR, et al. Decreased plasma enkephalins in copper deficiency in man. Am J Clin Nutr 1986;43:42–46.

    PubMed  CAS  Google Scholar 

  74. Gross AM, Prohaska J. Copper deficient mice have higher cardiac norepinephrine turnover. J Nutr 1990;120:88–96.

    PubMed  CAS  Google Scholar 

  75. Anonymous. Newly found roles for copper. Nutr Rev 1985;43:117–119.

    Google Scholar 

  76. Allen KGD, Arthur JR, Morrice PC, et al. Copper deficiency and tissue glutathione concentrations in the rat. Proc Soc Exp Biol Med 1988;18:38–43.

    Google Scholar 

  77. Boyne R, Arthur JR. Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle. Res Vet Sci 1986;41: 417–419.

    PubMed  CAS  Google Scholar 

  78. Prohaska JR, Lukasewycz OA. Copper deficiency during perinatal development: effects on the immune response of mice. J Nutr 1989;119:922–931.

    PubMed  CAS  Google Scholar 

  79. Aggett PJ, Campbell DM, Page KR. The metabolism of trace elements in pregnancy. In Chandra RK, ed: The Metabolism of Trace Elements in Children. New York: Raven Press;1991:27–46.

    Google Scholar 

  80. Taper LJ, Olivia JT, Ritchey SJ. Zinc and copper retention during pregnancy: the adequate of prenatal diets with and without supplementation. Am J Clin Nutr 1985;41:1184–1192.

    PubMed  CAS  Google Scholar 

  81. Turnlund JR, Swanson CA, King JC. Copper absorption and retention in pregnant women fed diets based on animal and plant proteins. J Nutr 1983;113:2346–2352.

    PubMed  CAS  Google Scholar 

  82. Tuttle S, Aggett PJ, Campbell DM, et al. Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravida and in primigravida at risk of delivering a growth retarded baby. Am J Clin Nutr 1985;41:1032–1041.

    PubMed  CAS  Google Scholar 

  83. Hurley LS. Teratogenic aspects of manganese, zinc and copper nutrition. Physiol Rev 1981;61:249–295.

    PubMed  CAS  Google Scholar 

  84. Linares A, Zarranz JJ, Rodriguez-Alarcon J, et al. Reversible cutis laxa due to maternal penicillamine treatment. Lancet 1979;2:43.

    PubMed  CAS  Google Scholar 

  85. Mjolnerod OK, Rasmussen K, Dommerud SA, et al. Congenital connective tissue defect due to d-penicillamine treatment in pregnancy. Lancet 1971;1: 673–675.

    PubMed  CAS  Google Scholar 

  86. Walshe JM. Pregnancy in Wilson’s disease. Q J Med 1973;46:73–83.

    Google Scholar 

  87. Shaw JCL. Trace elements in the fetus and young infant. II. Copper, manganese, selenium, and chromium. Am J Dis Child 1980;134:74–81.

    PubMed  CAS  Google Scholar 

  88. Faa G, Liguori C, Columbano A, et al. Uneven copper distribution in the human newborn liver. Hepatology 1987;7:838–842.

    PubMed  CAS  Google Scholar 

  89. Ryden L, Deutsch HF. Preparation and properties of the major copper binding component of human fetal liver: its identification as metallothionein. J Biol Chem 1978;253:519–524.

    PubMed  CAS  Google Scholar 

  90. Zlotkin SH, Cherian MG. Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 1988;24:326–329.

    PubMed  CAS  Google Scholar 

  91. Bingle CD, Srai SK, Whiteley GS, et al. Neonatal and adult Cu-64 metabolism in the pig and the possible relationship between the ontogeny of copper metabolism and Wilson’s disease. Biol Neonate 1988;54:294–300.

    PubMed  CAS  Google Scholar 

  92. Ehrenkranz RA, Gettner PA, Nelli CM, et al. Zinc and copper nutritional studies in very low birth weight infants: comparison of stable isotopic extrinsic tag and chemical balance methods. Pediatr Res 1989;26: 298–307.

    PubMed  CAS  Google Scholar 

  93. Casey CE, Neville MC, Hambidge KM. Studies in human lactation: secretion of zinc, copper, and manganese in human milk. Am J Clin Nutr 1989;49:773–785.

    PubMed  CAS  Google Scholar 

  94. Fransson G, Lonnerdal B. Distribution of trace elements and minerals in human and cows’ milk. Pediatr Res 1983;17:912–915.

    PubMed  CAS  Google Scholar 

  95. Lonnerdal B, Bell JG, Keen CL. Copper absorption from human milk, cow’s milk, and infant formulas using a suckling rat model. Am J Clin Nutr 1985;42: 836–844.

    PubMed  CAS  Google Scholar 

  96. Sutton AM, Harvie A, Cockburn F, et al. Copper deficiency in the preterm infant of very low birth-weight. Arch Dis Child 1985;60:644–651.

    PubMed  CAS  Google Scholar 

  97. Halliday HL, Lappin TRJ, McMaster D, Patterson CC. Copper and the preterm infant. Arch Dis Child 1985;60:1105–1106.

    Google Scholar 

  98. Hillman LS. Serial serum copper concentrations in premature and SGA infants during the first 3 months of life. J Pediatr 1981;98:305–308.

    PubMed  CAS  Google Scholar 

  99. Salmenpera L, Perheentupa J, Pakarinen P, et al. Cu nutrition in infants during prolonged exclusive breast feeding: low intake but rising serum concentrations of Cu and ceruloplasmin. Am J Clin Nutr 1986;43:251–257.

    PubMed  CAS  Google Scholar 

  100. Matsuda I, Pearson T, Holtzman NA. Determination of apoceruloplasmin by radioimmunoassay in nutritional copper deficiency, Menkes’ kinky hair syndrome, Wilson’s disease and umbilical cord blood. Pediatr Res 1974;8:821–824.

    PubMed  CAS  Google Scholar 

  101. Hillman LS, Martin L, Fiore B. Effect of oral copper supplementation on serum copper and caeruloplasmin concentrations in premature infants. J Pediatr 1981;98:311–313.

    PubMed  CAS  Google Scholar 

  102. Salim S, Farquharson J, Arneil GC, et al. Dietary copper intake in artificially fed infants. Arch Dis Child 1986;61:1068–1075.

    PubMed  CAS  Google Scholar 

  103. Haschke F, Ziegler EE, Edwards BB, et al. Effect of iron fortification of infant formula on trace mineral absorption. J Pediatr Gastroenterol Nutr 1986;5:768–773.

    PubMed  CAS  Google Scholar 

  104. Haschke F, Singer P, Baumgartner D, et al. Growth, zinc and copper nutritional states of male premature infants with different zinc intake. Ann Nutr Metab 1985;29:95–102.

    PubMed  CAS  Google Scholar 

  105. Barclay SM, Aggett PJ, Lloyd DJ, et al. Reduced erythrocyte superoxide dismutase activity in low birth weight infants given iron supplements. Pediatr Res 1991;29:297–301.

    PubMed  CAS  Google Scholar 

  106. Castillo-Duran C, Fisberg M, Valenzuela A, et al. Controlled trial of copper supplementation during the recovery from marasmus. Am J Clin Nutr 1983;37:898–903.

    PubMed  CAS  Google Scholar 

  107. Nisai Y, Kittua E, Fikuda K, et al. Copper deficiency associated with alkali therapy in a patient with renal tubular acidosis. J Pediatr 1981;98:81–83.

    Google Scholar 

  108. Levy Y, Zeharia A, Grunebaum M, et al. Copper deficiency in infants fed cow milk. J Pediatr 1985;106:786–788.

    PubMed  CAS  Google Scholar 

  109. Tyrala EE, Manser JI, Brodsky NL, et al. Distribution of copper in the serum of the parenterally fed premature infant. J Pediatr 1985;106:295–298.

    PubMed  CAS  Google Scholar 

  110. Recommended Dietary Allowances. Food and Nutrition Board. National Research Council, 10th ed. Washington, DC: National Academy of Sciences, 1989.

    Google Scholar 

  111. Zlotkin SH, Buchanan BE. Meeting the zinc and copper intake requirements in the parenterally fed preterm and term infant. J Pediatr 1983;103:441–446.

    PubMed  CAS  Google Scholar 

  112. James BE, Hendry PG, MacMahon RA. Total parenteral nutrition of premature infants: 2 requirements for micronutrient elements. Aust Pediatr J 1979;15: 67–71.

    CAS  Google Scholar 

  113. Anonymous. Genetic factors in copper deficiency. Nutr Rev 1987;45:60–62.

    Google Scholar 

  114. Danks DM, Campbell PE, Stevens BJ, et al. Menke’s kinky hair syndrome: an inherited defect in copper absorption with widespread effects. Pediatrics 1972;50:188–201.

    PubMed  CAS  Google Scholar 

  115. Kodama H, Okabe I, Yanagisawa M, et al. Copper deficiency in the mitochondrial of cultured skin fibroblasts from patients with Menkes’ syndrome. J Inner Metab Dis 1989;12:386–389.

    CAS  Google Scholar 

  116. Grover WD, Henkin RI. Trichopoliodystrophy (TPD): a fetal disorder of copper metabolism. Pediatr Res 1976;10:448. A.

    Google Scholar 

  117. Iwakawa Y, Niwa T, Tomita M. Menke’s kinky hair syndrome: a report on an autopsy case and his female sibling with similar clinical manifestations. Brain Dev 1979;11:260–266.

    Google Scholar 

  118. Tonnesen T, Horn N. Prenatal and postnatal diagnosis of Menkes’ disease, an inherited disorder of copper metabolism. J Inher Metab Dis 1989;12(suppl):207–214.

    PubMed  Google Scholar 

  119. Mehes K, Petrovicz E. Familial benign copper deficiency. Arch Dis Child 1982;57:716–717.

    PubMed  CAS  Google Scholar 

  120. Edwards CQ, Williams DM, Cartwright GE. Hereditary hypoceruloplasminemia. Clin Gen 1979;15:311–316.

    CAS  Google Scholar 

  121. Scheinberg IH, Sternleib I. Wilson’s Disease. Philadelphia: Saunders, 1984.

    Google Scholar 

  122. Frydman M, Bonne-Tamir B, Farrer LA, et al. Assignment of the gene for Wilson’s disease to chromosome 13: linkage to the esterase D locus. Proc Natl Acad Sci USA 1985;82:1819–1821.

    PubMed  CAS  Google Scholar 

  123. Bhave SA, Pandit AN, Tanner MS. Comparison of feeding history of children with Indian childhood cirrhosis and paired controls. J Pediatr Gastroenterol Nutr 1987;6:562–567.

    PubMed  CAS  Google Scholar 

  124. Muller-Hocker J, Meyer U, Wiebecke B, et al. Copper storage disease of the liver and chronic dietary intoxication in two further German infants mimicking Indian childhood cirrhosis. Pathol Res Pract 1988;183:39–45.

    PubMed  CAS  Google Scholar 

  125. Vallee BL, Galdes A. The metallobiochemistry of zinc enzymes. Adv Enzymol 1984;56:284–430.

    Google Scholar 

  126. Anonymous. Nucleoside Phosphorylase: a zinc metal-loenzyme and a marker of zinc deficiency. Nutr Rev 1984;42:279–281.

    Google Scholar 

  127. Alitalo K, Keski-Oja J, Bornstein P. Effects of Zn2+ ions on protein phosphorylation in epithelial cell membranes. J Cell Physiol 1983;115:305–311.

    PubMed  CAS  Google Scholar 

  128. Arquilla ER, Pactlar S, Tarmas W, et al. The effect of zinc on insulin metabolism. Endocrinology 1978;103: 1440–1446.

    PubMed  CAS  Google Scholar 

  129. Colvard DS, Wilson EM. Zinc potentiation of androgen receptor binding to nuclei in vitro. Biochemistry 1984;23:3471–3478.

    PubMed  CAS  Google Scholar 

  130. Eagle GR, Zombola NR, Hines RH. Tubulin-zinc interactions: binding and polymerization studies. Biochemistry 1983;22:221–228.

    PubMed  CAS  Google Scholar 

  131. Weston WL, Clark-Huff J, Humbert JR, et al. Zinc correction of defective Chemotaxis in acrodermatitis enteropathica. Arch Dermatol 1977;113:422–425.

    PubMed  CAS  Google Scholar 

  132. Wolman SL, Anderson GH, Marliss EB, et al. Zinc in total parenteral nutrition: requirements and metabolic effects. Gastroenterology 1979;76:458–467.

    PubMed  CAS  Google Scholar 

  133. Bothwell MA, Shooter EM. Thermodynamics of interaction of the subunits of 7S nerve growth factor. J Biol Chem 1978;253:8458–8461.

    PubMed  CAS  Google Scholar 

  134. Cung MT, Marraud M, Lefrancier P, et al. NMR study of a lymphocyte differentiating thymic factor. J Biol Chem 1988;263:5574–5580.

    PubMed  CAS  Google Scholar 

  135. Prasad AS, Meftah S, Abdallah J, et al. Serum thymulin in human zinc deficiency. J Clin Invest 1988;82: 1202–1210.

    PubMed  CAS  Google Scholar 

  136. Struhl K. Helix-turn-helix, zinc finger and leucine zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem Sci 1989;14:137–144.

    PubMed  CAS  Google Scholar 

  137. Koh JY, Choi DW Zinc alters existing amino acid neurotoxicity on cortical neurones. J Neuroscience 1988;8:2164–2171.

    CAS  Google Scholar 

  138. Giugliana R, Millward DJ. The effects of severe zinc deficiency on protein turnover in muscle and thymus. Br J Nutr 1987;57:139–155.

    Google Scholar 

  139. Golden MHN, Golden BE. Effect of zinc supplementation on the dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. Am J Clin Med 1981;34: 900–908.

    CAS  Google Scholar 

  140. Cunnane SC. Role of zinc in lipid and fatty acid metabolism and in membranes. Prog Food Nutr Sci 1988;12:151–188.

    PubMed  CAS  Google Scholar 

  141. Jackson MJ. Physiology of zinc: General Aspects. In Mills CF, ed: Zinc in Human Biology. New York: Springer-Verlag, 1989;1–14.

    Google Scholar 

  142. Naveh Y, Bentur L, Diamond E. Site of zinc absorption in dog small intestine. J Nutr 1988;118:61–64.

    PubMed  CAS  Google Scholar 

  143. Matseshe JW, Philips SF, Malagelada JR, et al. Recovery of dietary iron and zinc from the proximal intestine of healthy man: studies of different meals and supplements. Am J Clin Nutr 1980;33:1946–1943.

    PubMed  CAS  Google Scholar 

  144. Oestreicher P, Cousins RJ. Zinc uptake by baso-lateral membrane vesicles from rat small intestine. J Nutr 1989;119:639–646.

    PubMed  CAS  Google Scholar 

  145. Falchuk KH. Effect of acute disease and ACTH on serum zinc proteins. N Engl J Med 1977;296:1129–1134.

    PubMed  CAS  Google Scholar 

  146. Pattison SE, Cousins RJ. Zinc uptake and metabolism by hepatocytes. Fed Proc 1986;45:2805–2809.

    PubMed  CAS  Google Scholar 

  147. Anonymous. Interleukin-1 regulates zinc metabolism and metallothionein gene expression. Nutr Rev 1989;47:285–287.

    Google Scholar 

  148. Taylor CM, Bacon JR, Aggett PJ, et al. The homeostatic regulation of zinc absorption and endogenous zinc losses in zinc deprived man. Am J Clin Nutr 1991;53: 755–763.

    PubMed  CAS  Google Scholar 

  149. Fraker PJ, Jardieu P, Cook J. Zinc deficiency and immune function. Arch Dermatol 1987;123:1699–1701.

    PubMed  CAS  Google Scholar 

  150. Beach RS, Gershwin ME, Hurley LS. Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 1982;218:469–471.

    PubMed  CAS  Google Scholar 

  151. Wallwork JC. Zinc in the central nervous system. Prog Food Nutr Sci 1987;11:203–247.

    PubMed  CAS  Google Scholar 

  152. Golub MS, Gershwin ME, Hurley LS, et al. Studies of marginal zinc deprivation in rhesus monkeys. I. Influence on pregnant dams. Am J Clin Nutr 1984;39: 265–280.

    PubMed  CAS  Google Scholar 

  153. Golub MS, Gershwin ME, Hurley LS, et al. Studies of marginal zinc deprivation in rhesus monkeys: pregnancy outcome. Am J Clin Nutr 1984;39:879–887.

    PubMed  CAS  Google Scholar 

  154. Mahomed K, James DK, Golding J, et al. Zinc supplementation during pregnancy: a double blind randomised controlled trial. Br Med J 1989;299:826–830.

    CAS  Google Scholar 

  155. Cherry FF, Sandstead HH, Rojas P, et al. Adolescent pregnancy: associations among body weight, zinc nutriture, and pregnancy outcome. Am J Clin Nutr 1989;50:945–954.

    PubMed  CAS  Google Scholar 

  156. Simmer K, Thompson RPH. Maternal zinc and intrauterine growth retardation. Clin Sci 1985;68:359 – 399.

    Google Scholar 

  157. Kuhnert PM, Kuhnert BR, Erhard P, et al. The effect of smoking on placental and zinc status. Am J Obstet Gynecol 1987;157:1241–1246.

    PubMed  CAS  Google Scholar 

  158. Kuhnert BR, Kuhert PM, Debanne S, et al. The relationship between cadmium, zinc and birth weight in pregnant women who smoke. Am J Obstet Gynecol 1987;157:1247–1251.

    PubMed  CAS  Google Scholar 

  159. Kuhnert BR, Kuhnert PM, Zarlingo TJ. Associations between placental cadmium and zinc and age and parity in pregnant women who smoke. Obstet Gynecol 1988;71:67–70.

    PubMed  CAS  Google Scholar 

  160. Gishan FK, Green HC. Fetal alcohol syndrome: failure of zinc to reverse the effect of ethanol on placental transport of zinc. Pediatr Res 1983;17:529–531.

    Google Scholar 

  161. Page KR, Abramovich DR, Aggett PJ, et al. The transfer of zinc across the term dually perfused human placental lobule. Q J Exp Physiol 1988;73:585–593.

    PubMed  CAS  Google Scholar 

  162. Golub MS, Gershwin ME, Hurley LS, et al. Studies of marginal zinc deprivation: growth of infants in the first year. Am J Clin Nutr 1984;40:1192–1202.

    PubMed  Google Scholar 

  163. Leek LC, Vogler JB, Gershwin ME, et al. Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal defects. Am J Clin Nutr 1984;40: 1203–1212.

    PubMed  Google Scholar 

  164. Haynes DC, Gershwin ME, Golub MS, et al. Studies of marginal zinc deprivation in rhesus monkeys. VI. Influence on the immunohaematology of infants in the first year. Am J Clin Nutr 1984;42:252–262.

    Google Scholar 

  165. Shaw JCL. Trace elements in the fetus and young infant. I. Zinc. Am J Dis Child 1979;133:1260–1268.

    CAS  Google Scholar 

  166. Casey CE, Robinson MF. Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues. Br J Nutr 1978;39:639–646.

    PubMed  CAS  Google Scholar 

  167. Cassens RG, Hoekstra WG, Faltin EC, et al. Zinc content and subcellular distribution in red vs white porcine skeletal muscle. Am J Physiol 1967;212:688–692.

    PubMed  CAS  Google Scholar 

  168. Panemangalore M, Banerjee D, Onosaka S, et al. Changes in the intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev Biol 1983;97:95–102.

    PubMed  CAS  Google Scholar 

  169. Gallant KR, Cherian MG. Influence of maternal mineral deficiency as the hepatic metallothionein and zinc in newborn rats. Biochem Cell Biol 1986;64:8–12.

    PubMed  CAS  Google Scholar 

  170. Gallent KR, Cherian MG. Changes in dietary zinc result in specific alterations of metallothionein concentrations in newborn rat liver. J Nutr 1987;117:709–716.

    Google Scholar 

  171. Keen CL, Lonnerdal B, Golub MS, et al. Influence of marginal maternal zinc deficiency on pregnancy outcome and zinc status in rhesus monkeys. Pediatr Res 1989;26:470–477.

    PubMed  CAS  Google Scholar 

  172. Clough SR, Mitra RS, Kulkarni AP. Qualitative and quantitative aspects of human fetal liver metallothionein. Biol Neonate 1986;49:241–254.

    PubMed  CAS  Google Scholar 

  173. Ziegler EE, Serfass RE, Nelson SE, et al. Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn and extrinsic tag. J Nutr 1989;119:1647–1653.

    PubMed  CAS  Google Scholar 

  174. Lonnerdal B, Bell J, Hendricks AG, et al. Affect of phytate removal on zinc absorption from soy formula. Am J Clin Nutr 1988;48:1301–1306.

    PubMed  CAS  Google Scholar 

  175. Bonifazi E, Rigillo N, De Simone B, et al. Acquired dermatitis due to zinc deficiency in a premature infant. Acta Derm Venereol (Stockh) 1980;60:449–451.

    CAS  Google Scholar 

  176. Sivasubramanian KN, Henkin RI. Behavioural and dermatologie changes and a low serum zinc and copper concentration in two premature infants after parenteral alimentation. J Pediatr 1978;93:847–851.

    PubMed  CAS  Google Scholar 

  177. Arakawa T, Tamura T, Igarashi Y, et al. Zinc deficiency in two infants during parenteral alimentation. Am J Clin Nutr 1976;29:197–204.

    PubMed  CAS  Google Scholar 

  178. Aggett PJ, Atherton DJ, More J, et al. Symptomatic zinc deficiency in a breast fed preterm infant. Arch Dis Child 1980;58:547–550.

    Google Scholar 

  179. Zimmerman AW, Hambidge KM, Leplow ML, et al. Acrodermatitis in breast-fed premature infants: evidence for a defect of mammary zinc secretion. Pediatrics 1982;69:176–183.

    PubMed  CAS  Google Scholar 

  180. Murphy JF, Gray OP, Randall JR, et al. Zinc deficiency: a problem with preterm breast milk. Early Hum Dev 1985;10:303–307.

    PubMed  CAS  Google Scholar 

  181. Roberts LJ, Shadwick CF, Bergstresser PR. Zinc deficiency in two full-term breast-fed infants. J Am Acad Dermatol 1987;16:301–304.

    PubMed  CAS  Google Scholar 

  182. Kuramoto Y, Igarashi Y, Kato S, et al. Acquired zinc deficiency in two breast-fed mature infants. Acta Derm Venereol (Stockh) 1986;66:359–363.

    CAS  Google Scholar 

  183. Bye AME, Goodfellow A, Atherton DJ. Transient zinc deficiency in a full-term breast-fed infant of normal birth weight. Pediatr Dermatol 1985;2:308–311.

    PubMed  CAS  Google Scholar 

  184. Morishima Y, Tagi S, Kuwabara A, et al. An acquired form of acrodermatitis enteropathica due to long term lactose free milk alimentation. J Dermatol 1980;7: 121–125.

    PubMed  CAS  Google Scholar 

  185. Ermacora E, Benelli MG. Acrodermatite enteropatica in bambino fenilchetonurico. Minerva Dermatol 1968;41:523–524.

    Google Scholar 

  186. Hambidge KM, Walravens PA, Casey CE, et al. Plasma zinc concentrations of breast fed infants. J Pediatr 1979;94:607–608.

    PubMed  CAS  Google Scholar 

  187. Gibson RS, Dewolfe MS. Changes in serum zinc concentrations of some Canadian full term and low birth-weight infants from birth to six months. Acta Paediatr Scand 1981;70:497–500.

    PubMed  CAS  Google Scholar 

  188. Tyrala EE, Manser JI, Brodsky NL, Tran N. Serum zinc concentrations in growing preterm infants. Acta Paediatr Scand 1983;72:695–698.

    PubMed  CAS  Google Scholar 

  189. Altigani M, Murphy JF, Gray OP. Plasma zinc concentration and catchup growth in preterm infants. Acta Paediatr Scand [Suppl 357] 1989;20–33.

    Google Scholar 

  190. Golden BE, Golden MHN. Plasma zinc, rate of weight gain, and the energy cost of tissue deposition in children recovering from severe malnutrition in a cows’ milk or soya protein based diet. Am J Clin Nutr 1981;34:892–899.

    PubMed  CAS  Google Scholar 

  191. Murray EJ, Messer HH. Turnover of bone zinc during normal and accelerated bone loss in rats. J Nutr 1981;111:1641–1647.

    PubMed  CAS  Google Scholar 

  192. Koo WWK, Succop P, Hambidge M. Serum alkaline phosphatase and serum zinc concentrations in preterm infants with rickets and fractures. Am J Dis Child 1989;143:1342–1345.

    PubMed  CAS  Google Scholar 

  193. Krebs NF, Hambidge KM. Zinc requirements and zinc intakes of breast-fed infants. Am J Clin Nutr 1986;43: 288–292.

    PubMed  CAS  Google Scholar 

  194. American Academy of Pediatrics: Committee on Nutrition. Nutritional needs of low birth weight infants. Pediatrics 1985;75:976–986.

    Google Scholar 

  195. Van Wouwe JP. Clinical and laboratory diagnosis of acrodermatis enteropathica. Eur J Paediatr 1989;49:2–8.

    Google Scholar 

  196. Aggett PJ. Acrodermatitis enteropathica. J Inner Metab Dis 1983;6(suppl l):22–30.

    CAS  Google Scholar 

  197. Failla ML, van de Verdonk M, Morgan WT, et al. Characterization of zinc binding proteins in plasma of patients with hyperzincaemia. J Lab Clin Med 1982;100:943–952.

    PubMed  CAS  Google Scholar 

  198. Robinson MF, Thomson CD. The role of selenium in the diet. Nutr Abstr Rev Rev Clin Nutr 1983;53:3–26.

    Google Scholar 

  199. Burke RF. Recent developments in trace element metabolism and function: newer roles of selenium in nutrition. J Nutr 1989;119:1051–1054.

    Google Scholar 

  200. Wolffram S, Berger B, Grenacher B, et al. Transport of selenoamino acids and their sulphur analogues across the intestinal tract border membrane of pigs. J Nutr 1989;119:706–712.

    PubMed  CAS  Google Scholar 

  201. Martin R, Janghorbani M, Young VR. Experimental selenium restriction in healthy adult humans: changes in selenium metabolism studied with stable isotope methodology. Am J Clin Nutr 1989;49:854–861.

    PubMed  CAS  Google Scholar 

  202. Sunde RA. The biochemistry of selenoproteins. J Am Oil Chem Soc 1984;61:1891–1900.

    CAS  Google Scholar 

  203. Yang GX, Wang SX, Zhon RX, et al. Endemic selenium intoxication of humans in China. Am J Clin Nutr 1983;37:872–881.

    PubMed  CAS  Google Scholar 

  204. Keshan Disease Research Group, Chinese Academy of Medical Sciences. Observations on the effect of sodium selenite in the prevention of Keshan disease. Chin Med J 1979;92:471–476.

    Google Scholar 

  205. Johnson RA, Baker SS, Fallon JT, et al. An occidental case of cardiomyopathy and selenium deficiency. N Engl J Med 1981;304:1210–1212.

    PubMed  CAS  Google Scholar 

  206. Vinton NE, Dahlstrom KA, Strobel CT, et al. Macrocy-tosis and pseudoalbinism: manifestations of selenium deficiency. J Pediatr 1987;111:711–717.

    PubMed  CAS  Google Scholar 

  207. Cohen HJ, Brown MR, Hamilton D, et al. Glutathione peroxidase and selenium deficiency in patients receiving home parenteral nutrition: time course for development of deficiency and repletion of activity in plasma and blood cells. Am J Clin Nutr 1989;49:132–139.

    PubMed  CAS  Google Scholar 

  208. Swanson CA, Reamer DC, Veillon C, et al. Quantitative and qualitative aspects of selenium utilisation in pregnant and non-pregnant women: an application of stable isotope methodology. Am J Clin Nutr 1983;38: 169–180.

    PubMed  CAS  Google Scholar 

  209. Shennan DB, Boyd CAR. Review article: placental handling of trace elements. Placenta 1988;9:333–343.

    PubMed  CAS  Google Scholar 

  210. Kumpulainen J, Salmenpera L, Siimes MA, et al. Selenium status of exclusively breast-fed infants as influenced by maternal organic or inorganic selenium supplementation. Am J Clin Nutr 1985;42:829–835.

    PubMed  CAS  Google Scholar 

  211. Smith AM, Picciano MF, Milner JA. Selenium intakes and status of human milk and formula fed infants. Am J Clin Nutr 1982;35:521–526.

    PubMed  CAS  Google Scholar 

  212. Lombeck I, Ebert KH, Kasperek K, et al. Selenium intake of infants and young children, healthy children and dietetically treated patients with phenylketonuria. Eur J Pediatr 1984;143:99–102.

    PubMed  CAS  Google Scholar 

  213. Matovinovic J. Endemic goitre and cretinism at the dawn of the third millenium. Annu Rev Nutr 1983;3: 341–412.

    PubMed  CAS  Google Scholar 

  214. Hetzel BS. Iodine deficiency disorders (IDD) and their eradication. Lancet 1982;2:1126–1129.

    Google Scholar 

  215. Ingbar SH. The thyroid gland. In Wilson JD, Foster DW, eds: Williams Textbook of Endocrinology, 7th ed. Philadelphia: Saunders, 1985;682–815.

    Google Scholar 

  216. O’Neil B, Magnolato D, Semenza F. The electrogenic Na+ dependent I- transport system in plasma membrane vesicles from thyroid glands. Biochim Biophys Acta 1987;896:263–274.

    Google Scholar 

  217. Delange F, Heidemann P, Bourdoux P, et al. Regional variations of iodine nutrition and thyroid function during the neonatal period in Europe. Biol Neonate 1986;49:322–330.

    PubMed  CAS  Google Scholar 

  218. Delange F, Dalhem A, Bourdoux P, et al. Increased risk of primary hypothyroidism in preterm infants. J Pediatr 1984;105:462–469.

    PubMed  CAS  Google Scholar 

  219. Keen CL, Lonnerdal B, Hurley LS. Manganese. In Frieden E, ed: Biochemistry of the Essential Ultratrace Elements. New York: Plenum, 1984;89–132.

    Google Scholar 

  220. Anonymous. Manganese deficiency in humans: fact or fiction. Nutr Rev 1988;46:348–352.

    Google Scholar 

  221. Miller C, Aggett PJ, Lloyd DJ. Manganese balance in term infants up to 3 months of age. Submitted for publication.

    Google Scholar 

  222. Hatano S, Nishi Y, Usui T. Erythrocyte manganese concentration in healthy children, adults, and the elderly and in cord blood. Am J Clin Nutr 1983;37: 457–460.

    PubMed  CAS  Google Scholar 

  223. Stastny D, Vogel R, Picciano ME Manganese intake and serum manganese concentrations of human milk-fed and formula-fed infants. Am J Clin Nutr 1984;39: 872–878.

    PubMed  CAS  Google Scholar 

  224. Lombeck I, Wendel U, Versieck J, et al. Increased manganese content and reduced arginase activity in erythrocytes of a patient with prolidase deficiency (iminodipeptiduria). Eur J Pediatr 1986;144:571–573.

    PubMed  CAS  Google Scholar 

  225. Rajagopalan KV. Molybdenum**2014an essential trace element. Nutr Rev 1987;45:321–328.

    PubMed  CAS  Google Scholar 

  226. Abumrad NN, Schneider AJ, Steel D, et al. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am J Clin Nutr 1981;34:2551–2559.

    PubMed  CAS  Google Scholar 

  227. Wadman SK, Duran M, Beemer FA, et al. Absence of hepatic molybdenum cofactor: an inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase. J Inner Metab Dis 1983;6(suppl 1):78–83.

    Google Scholar 

  228. Casey CE, Neville MC. Studies on human lactation. 3. Molybdenum and nickel in human milk during the first month of lactation. Am J Clin Nutr 1987;45:921–926.

    PubMed  CAS  Google Scholar 

  229. Anonymous. Is chromium essential for humans? Nutr Rev 1988;46:17–20.

    Google Scholar 

  230. Borel JS, Anderson RA. Biochemistry of chromium. In Frieden E, ed: Biochemistry of the Elements. New York: Plenum, 1984;175–199.

    Google Scholar 

  231. Casey CE, Hambidge KM. Chromium in human milk from American mothers. Br J Nutr 1984;52:73–77.

    PubMed  CAS  Google Scholar 

  232. Neilsen FH. Ultratrace elements in nutrition. Annu Rev Nutr 1984;4:21–41.

    Google Scholar 

  233. Ekstrand J. Fluoride intake in early infancy. J Nutr 1989;119:1856–1860.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Aggett, P.J., Barclay, S.M. (1991). Neonatal Trace Element Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics