Skip to main content

Abstract

Fats are vital for normal growth and development. Fat is the main energy source of the neonate. In addition to providing 40–50% of the total calories in human milk or formula, fats are essential to normal development because they provide the fatty acids necessary for brain development, are an integral part of all cell membranes, and are the sole vehicle for fat-soluble vitamins and hormones in milk.1 These energy-rich lipids can be stored in the body in nearly unlimited amounts in contrast to the limited storage capacity for carbohydrate and protein. Before birth, glucose is the major energy source, whereas the fetal requirement for fatty acids is supplied mainly as free fatty acids from the maternal circulation. After birth, fat is supplied chiefly in the form of milk or formula triglycerides.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamosh M. Fat needs for term and preterm infants. In Tsang RC, Nichols BL, eds: Nutrition During Infancy. Philadelphia: Hanley & Belfus, 1988;133–159.

    Google Scholar 

  2. Hamosh M. Lipid metabolism in premature infants. Biol Neonate 1987;52(suppl):50–64.

    PubMed  CAS  Google Scholar 

  3. Patton JS. Gastrointestinal lipid digestion. In Johnson LR, ed: Physiology of the Gastrointestinal Tract. New York: Raven Press, 1981;1123–1146.

    Google Scholar 

  4. Hamosh M, Bitman J, Wood DL, et al. Lipids in milk and the first steps in their digestion. Pediatrics 1985;75(suppl):146–150.

    PubMed  CAS  Google Scholar 

  5. Mehta NR, Jones JB, Hamosh M. Lipases in human milk: ontogeny and physiologic significance. J Pediatr Gastroenterol Nutr 1982;1:317–326.

    PubMed  CAS  Google Scholar 

  6. Hamosh M. Physiological role of human milk lipases. In Lebenthal E, ed: Gastrointestinal Development and Infant Nutrition. New York: Raven Press, 1981;473–482.

    Google Scholar 

  7. Jensen RG. The Lipids of Human Milk. Boca Raton: CRC Press, 1989.

    Google Scholar 

  8. Hall B. Uniformity of human milk. Am J Clin Nutr 1979;32:304–310.

    PubMed  CAS  Google Scholar 

  9. Bitman J, Wood DL, Hamosh M, et al. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr 1983;38: 300–312.

    PubMed  CAS  Google Scholar 

  10. Reugg M, Blanc B. The fat globule size distribution in human milk. Biochim Biophys Acta 1981;666:7–13.

    Google Scholar 

  11. Jensen RG, Clark RM, Ferris AM. Composition of the lipids in human milk: a review. Lipids 1980;15:345–352.

    PubMed  CAS  Google Scholar 

  12. Harris WD, Connor WE, Lindsey S. Will dietary W-3 fatty acids change the composition of human milk. Am J Clin Nutr 1984;40:780–785.

    PubMed  CAS  Google Scholar 

  13. Craig-Schmidt MC, Weete JD, Faircloth SA, et al. The effect of hydrogenated fat in the diet of nursing mothers on lipid composition and prostaglandin content of human milk. Am J Clin Nutr 1984;39:778–786.

    PubMed  CAS  Google Scholar 

  14. Chappell JE, Clandinin MT, Kearney-Volpe C. Trace fatty acids in human milk lipids: influence of maternal diet and weight loss. Am J Clin Nutr 1985;42: 49–56.

    PubMed  CAS  Google Scholar 

  15. Bitman J, Hamosh M, Wood DL, et al. Lipid composition of milk from mothers with cystic fibrosis. Pediatrics 1987;80:927–932.

    PubMed  CAS  Google Scholar 

  16. Bitman J, Hamosh M, Hamosh P, et al. Milk composition and volume during the onset of lactation in a diabetic mother. Am J Clin Nutr 1989;50:1364–1369.

    PubMed  CAS  Google Scholar 

  17. Wang CS, Illingworth DR. Lipid composition and lipolytic activities in milk from a patient with homozygous familial hypobetalipoproteinemia. Am J Clin Nutr 1987;45:730–736.

    PubMed  CAS  Google Scholar 

  18. Hall B. Changing composition of human milk and early development of an appetite control. Lancet 1975;1:779–781.

    PubMed  CAS  Google Scholar 

  19. Hytten FE. Clinical and chemical studies in human lactation. II. Variation in major constituents during a feed. Br Med J 1977;1:176–179.

    Google Scholar 

  20. Lucas A, Lucas PJ, Baum JD. The nipple shield system: a device for measuring the dietary intake of breast fed infants. Early Hum Dev 1980;4:365–272.

    PubMed  CAS  Google Scholar 

  21. Smart JL. Human milk fat and satiety: an appealing idea reappraised. Early Hum Dev 1978;2:395–397.

    PubMed  CAS  Google Scholar 

  22. Woolridge MW, Baum JD, Drewett RF. Does a change in the composition of human milk affect sucking patterns and milk intake? Lancet 1980;2:192–194.

    Google Scholar 

  23. Drewett RF. Returning to the suckled breast: a further test of Hall’s hypothesis. Early Hum Dev 1982;6:161–163.

    PubMed  CAS  Google Scholar 

  24. Nysenbaum AN, Smart JL. Suckling behavior and milk intake of neonates in relation to milk fat content. Early Hum Dev 1982;6:205–213.

    PubMed  CAS  Google Scholar 

  25. Lucas A, Lucas PJ, Baum JD. Pattern of milk flow in breast fed infants. Lancet 1979;2:57–58.

    PubMed  CAS  Google Scholar 

  26. Lucas A, Lucas PJ, Baum JD. Differences in the pattern of milk intake between breast and bottle fed infants. Early Hum Dev 1981;5:195–199.

    PubMed  CAS  Google Scholar 

  27. Cavell B. Gastric emptying in preterm infants. Acta Paediatr Scand 1979;68:725–730.

    PubMed  CAS  Google Scholar 

  28. Cavell B. Gastric emptying in infants fed human milk or infant formula. Acta Paediatr Scand 1981;70:639–641.

    PubMed  CAS  Google Scholar 

  29. Lucas A, Blackburn AM, Aynsley-Green A, et al. Breast vs bottle: endocrine responses are different with formula feeding. Lancet 1980;1:267–269.

    Google Scholar 

  30. Lucas A, Boyles S, Bloom SR, et al. Metabolic and endocrine responses to milk feed in six day old term infants: differences between breast and cow’s milk formula feeding. Acta Paediatr Scand 1981;70:195–200.

    PubMed  CAS  Google Scholar 

  31. Knittle JL, Hirsch J. Effect of early nutrition on the development of rat epididymal fat pads: cellular-ity and metabolism. J Clin Invest 1968;47:2091–2098.

    PubMed  CAS  Google Scholar 

  32. Knittle JL. Obesity in childhood: a problem in adipose tissue cellular development. J Pediatr 1972;81:1048–1059.

    PubMed  CAS  Google Scholar 

  33. Hamosh M, Hamosh P. Does nutrition in early life have long term metabolic effects: can animal models be used do predict these effects in the human? In Goldman AS, Atkinson SA, Hanson LA, eds, Human Lactation. Vol. 3. The Effects of Human Milk on the Recipient Infant. New York: Plenum Press, 1987;37–55.

    Google Scholar 

  34. Kramer MC. Do breast-feeding and delayed introduction of solid foods protect against subsequent obesity? J Pediatr 1981;98:883–887.

    PubMed  CAS  Google Scholar 

  35. Marmot MG, Page CM, Atkins E, et al. Effect of breast feeding on plasma cholesterol and weight in young adults. J Epidemiol Commun Health 1980;34: 164–167.

    CAS  Google Scholar 

  36. Dewey KG, Lonnerdal B. Milk and nutrient intake of breast fed infants from 1 to 6 months: relation to growth and fatness. J Pediatr Gastroenterol Nutr 1983;2:497–506.

    PubMed  CAS  Google Scholar 

  37. Butte NF, Garza C, Smith EO, et al. Human milk intake and growth in exclusively breast fed infants. J Pediatr 1984;104:187–195.

    PubMed  CAS  Google Scholar 

  38. Garza C, Stuff J, Butte NJ, et al. Complementation and weaning phases of lactation. In Hamosh M, Goldman AS, eds: Human Lactation. Vol. 2. Maternal and Environmental Effects. New York: Plenum Press, 1986;155–163.

    Google Scholar 

  39. Dewey KG, Finley DA, Lonnerdal B. Breast milk volume and composition during late lactation (7–20 months). J Pediatr Gastroenterol Nutr 1984;3:713–720.

    PubMed  CAS  Google Scholar 

  40. Neville MC, Oliva-Rasbach J. Is maternal milk production limiting for infant growth during the first year of life in breast fed infants? In Goldman AS, Atkinson A, Hanson LA, eds: Human Lactation. Vol. 3. Effect of Human Milk Upon the Recipient Infant. New York: Plenum Press, 1987;123–133.

    Google Scholar 

  41. Van Aerde J, Sauer P, Heim T, et al. Comparison of long-chain triglyceride formula vs own mother’s milk, feeding on growth, macronutrient and energy balance in very low birth weight infants. Pediatr Res 1987;21:439A.

    Google Scholar 

  42. Van Aerde J, Sauer P, Heim T, et al. Composition of weight gain and macronutrient storage in very low birth weight infants fed on mother’s milk or medium-chain triglyceride enriched formula. Pediatr Res 1987;21:281A.

    Google Scholar 

  43. Lucas A, Ewing G, Robert SB, et al. How much energy does the breast-fed consume and expend? Br Med J 1987;295:75–77.

    CAS  Google Scholar 

  44. Prentice AM, Lucas A, Vasquez-Valasquez L, et al. Are current dietary guidelines for young children a prescription for overfeeding? Lancet 1988;2:1066–1069.

    PubMed  CAS  Google Scholar 

  45. Neville MC, Keller R, Seacat J, et al. Studies in human lactation: milk volumes in lactating women during the onset of lactation and full lactation. Am J Clin Nutr 1988;48:1375–1386.

    PubMed  CAS  Google Scholar 

  46. Dewey KG, Lonnerdal B. Infant self-regulation of breast milk intake. Acta Paediatr Scand 1986;75:893–898.

    PubMed  CAS  Google Scholar 

  47. Poissonnet CM, LaVelle M, Burdi AR. Growth and development of adipose tissue. Pediatrics 1988;113: 1–9.

    CAS  Google Scholar 

  48. Bray GA. Obesity—a disease of nutrient or energy inbalance. Nutr Rev 1987;45:33–43.

    PubMed  CAS  Google Scholar 

  49. Summary of workshop: fetal and infant nutrition and susceptibility to obesity. Nutr Rev 1978;36:122–126.

    Google Scholar 

  50. Committee on Nutrition, American Academy of Pediatrics. Nutritional aspects of obesity in infancy and childhood. Pediatrics 1981;68:880–883.

    Google Scholar 

  51. Stern J, Greenwood MRC. A review of development of adipose cellularity in man and animals. Fed Proc 1974;33:1952–1955.

    PubMed  CAS  Google Scholar 

  52. Burdi AR, Poissonnet CM, Garn SM, et al. Adipose tissue growth pattern during human gestation: a histometric comparison of buccal and gluteal fat depots. Int J Obes 1985;9:247–256.

    PubMed  CAS  Google Scholar 

  53. Hamosh M, Hamosh P. Lipoprotein lipase: its physiological and clinical significance. Mol Aspects Med 1983;6:199–289.

    PubMed  CAS  Google Scholar 

  54. Borensztajn J. Lipoprotein Lipase. Chicago: Evener Publishers, 1987.

    Google Scholar 

  55. Belfrage P, Fredrikson G, Stralfors P, et al. Adipose tissue lipases. In Borgstrom B, Brockman HL, eds: Lipases. Amsterdam: Elsevier, 1984;365–416.

    Google Scholar 

  56. Bjorntorp P, Karlsson M, Petterson P, et al. Differentiation and function of rat adipocyte precursor cells in primary culture. J Lipid Res 1980;21:714–723.

    PubMed  CAS  Google Scholar 

  57. Hietanen E, Greenwood MRC. A comparison of lipoprotein lipase activity and adipocyte differentiation in growing male rats. J Lipid Res 1977;18:480–490.

    PubMed  CAS  Google Scholar 

  58. Johasson L, Hansson GK, Bondjers G, et al. Immuno-histochemical localization of lipoprotein lipase in human adipose tissue. Atherosclerosis 1984;51:313–326.

    Google Scholar 

  59. Hausman GJ. Histochemically detectable lipoprotein lipase activity in adipose tissue of pigs of normal and decapitated pig fetuses. Acta Anat (Basel) 1982;114: 281–290.

    CAS  Google Scholar 

  60. Vannier C, Jansen H, Negrel R, et al. Study of lipoprotein lipase content in Ob17 preadipocytes during adipose conversion. J Biol Chem 1982;257: 1237–1239.

    Google Scholar 

  61. Eckel RH, Yost TJ. Weight reduction increases adipose tissue lipoprotein lipase responsiveness in obese women. J Clin Invest 1987;80:992–997.

    PubMed  CAS  Google Scholar 

  62. Yost TJ, Eckel RH. Fat calories may be preferentially stored in reduced obese women: a permissive pathway for assumption of the obese state. J Clin Endocrinol Metab 1988;67:259–264.

    PubMed  CAS  Google Scholar 

  63. Jacobson B, Smith U. Effect of cell size on lipolysis and antilipolytic action of insulin in human fat cells. J Lipid Res 1972;13:651–656.

    Google Scholar 

  64. Adebonjo OF, Coates PM, Cortner JA. Hormonesensitive lipase in human adipose tissue, isolated adipocytes and cultured adipocytes. Pediatr Res 1982;16:982–988.

    Google Scholar 

  65. Brook CGD, Lloyd JK, Wolf OH. Relation between age of onset of obesity and size and number of adipose cells. Br Med J 1972;2:25–27.

    PubMed  CAS  Google Scholar 

  66. Hirsch J, Knittle JL. Cellularity of obese and non-obese human adipose tissue. Fed Proc 1970;29:1516–1521.

    PubMed  CAS  Google Scholar 

  67. Brook CGD. Evidence for a sensitive period in adipose cell replication in man. Lancet 1972;2:624–627.

    PubMed  CAS  Google Scholar 

  68. Hirsch J. Cell number and size as a determinant of subsequent obesity. Curr Concepts Nutr 1975;3:15–21.

    PubMed  CAS  Google Scholar 

  69. Roche AF. The adipocyte-number hypothesis. Child Dev 1981;52:43–53.

    Google Scholar 

  70. Hager A, Sjostrom L, Arvidsson P, et al. Body fat and adipose tissue cellularity in infants: a longitudinal study. Metabolism 1977;26:607–614.

    PubMed  CAS  Google Scholar 

  71. Knittle JL, Timmers K, Ginsberg-Fellner F, et al. The growth of adipose tissue in children and adolescents: cross sectional and longitudinal studies of adipose cell number and size. J Clin Invest 1979;63:239–246.

    PubMed  CAS  Google Scholar 

  72. Faust IM, Johnson PR, Stern JS, et al. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol 1978;235:E279–E286.

    PubMed  CAS  Google Scholar 

  73. Faust IM, Johnson PR, Hirsch J. Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr 1980;110:2027–2034.

    PubMed  CAS  Google Scholar 

  74. Bjorntorp P, Karlsson M, Petterson P. Expansion of adipose tissue storage capacity at different ages in rats. Metabolism 1982;31:366–373.

    PubMed  CAS  Google Scholar 

  75. Lewis DS, Bertrand HA, Masoro EJ, et al. Preweaning nutrition and fat development in baboons. J Nutr 1983;113:2253–2259.

    PubMed  CAS  Google Scholar 

  76. Lewis DS, Bertrand HA, Masoro EJ, et al. Effect of interaction of gender and energy intake on lean body mass and fat mass gain in infant baboons. J Nutr 1984;114:2021–2026.

    PubMed  CAS  Google Scholar 

  77. Lewis DS, Bertrand HA, McMahan CA, et al. Preweaning food intake influences the adiposity of young adult baboons. J Clin Invest 1987;78:899–905.

    Google Scholar 

  78. Faust IM, Johnson PR, Hirsch J. Surgical removal of adipose tissue alters feeding behavior and the development of obesity in rats. Science 1977;197:393–396.

    PubMed  CAS  Google Scholar 

  79. Dunlop M, Court JM, Hobbs JB, et al. Identification of small cells in fetal and infant adipose tissue. Pediatr Res 1978;12:905–907.

    PubMed  CAS  Google Scholar 

  80. Enzi G, Zanardo V, Caretta F, et al. Intrauterine growth and adipose tissue development. Am J Clin Nutr 1981;34:1785–1790.

    PubMed  CAS  Google Scholar 

  81. Ravelli GP, Stein ZA, Susser MW Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295:349–353.

    PubMed  CAS  Google Scholar 

  82. Whitelaw AGL. Influence of maternal obesity on subcutaneous fat in the newborn. Br J Med 1976;1:985–986.

    CAS  Google Scholar 

  83. Whitelaw AGL. Subcutaneous fat in newborn infants of diabetic mothers: an indication of quality of diabetic control. Lancet 1977;1:15–18.

    PubMed  CAS  Google Scholar 

  84. Nedergaard J, Lindberg O. The brown fat cell. Int Rev Cytol 1982;74:187–286.

    PubMed  CAS  Google Scholar 

  85. Himms-Hagen J. Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr 1985;5:69–94.

    PubMed  CAS  Google Scholar 

  86. Nedergaard J, Cannon B. Brown adipose tissue: development and function. In Fox WW, Polin RA, eds: Neonatal and Fetal Medicine. Philadelphia: Saunders, 1991 (in press).

    Google Scholar 

  87. Nedergaard J, Conolly E, Cannon B, et al. Brown adipose tissue in the mammalian neonate. In Trayhurn P, Nicholls DG, eds: Brown Adipose Tissue. London: Edward Arnold, 1986;152–213.

    Google Scholar 

  88. Trayhurn P, Nicholls DG, eds. Brown Adipose Tissue. London: Edward Arnold, 1986.

    Google Scholar 

  89. Lean MEJ, James WPT, Jennings G, et al. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 1986;71:291–297.

    PubMed  CAS  Google Scholar 

  90. Brooke OG, Harris M, Salvosa CB. The response of malnourished babies to cold. J Physiol (Lond) 1973;233:75–91.

    CAS  Google Scholar 

  91. Moore BJ, Stern JS, Horwitz BA. Brown fat mediates energy expenditure of cold-exposed overfed neonatal rats. Am J Physiol 1986;251:R518–R524.

    PubMed  CAS  Google Scholar 

  92. Goodbody AE, Trayhurn P. Studies on the activity of brown adipose tissue in suckling, pre-obese Ob/ob mice. Biochim Biophys Acta 1982;680:119–126.

    PubMed  CAS  Google Scholar 

  93. Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog Lipid Res 1982;21:1–45.

    PubMed  CAS  Google Scholar 

  94. Carey EM. The biochemistry of fetal brain development and myelination. In Jones CT, ed: Biochemical Development of the Fetus and Neonate. New York: Elsevier, 1982;287–336.

    Google Scholar 

  95. Meisami E, Timiras PS. Normal and abnormal biochemical development of the brain after birth. In Jones CT, ed: The Biochemical Development of the Fetus and Neonate. New York: Elsevier, 1981;759–821.

    Google Scholar 

  96. Feldman M, Van Aerde JE, Clandinin MT. Lipid accretion in the fetus and newborn. In Polin RA, Fox WW, eds: Neonatal and Fetal Medicine. Philadelphia: Saunders, 1991 (in press).

    Google Scholar 

  97. Carlson SE. Very long chain fatty acids in the developing retina and brain. In Polin RA, Fox WW, ed: Neonatal and Fetal Medicine. Philadelphia: Saunders, 1991 (in press).

    Google Scholar 

  98. Clandinin MT, Chappell JE, Heim T, et al. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev 1981;5:355–366.

    PubMed  CAS  Google Scholar 

  99. Kuhn DC, Crawford M. Placental essential fatty acid transport and prostaglandin synthesis. Prog Lipid Res 1986;25:345–353.

    PubMed  CAS  Google Scholar 

  100. Clandinin MT, Chappell JE, Heim T. Do low weight infants require nutrition with chain elongation— desaturation products of essential fatty acids? Prog Lipid Res 1981;20:901–904.

    PubMed  CAS  Google Scholar 

  101. Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 1985;24:69–176.

    PubMed  CAS  Google Scholar 

  102. Carlson SE, Rhodes PG, Ferguson MG. Docosohex-aenoic acid status of preterm infants at birth and following feeding with human milk or formula. Am J Cin Nutr 1985;44:798–804.

    Google Scholar 

  103. Liu CCF, Carlson SE, Rhodes PG, et al. Increase in plasma phospholipid docosahexaenoic and eicosapen-taenoic acids as a reflection of their intake and mode of administration. Pediatr Res 1987;22:292–296.

    PubMed  CAS  Google Scholar 

  104. Carlson SE, Rhodes PG, Roa VS, et al. Effect of fish oil supplementation on the n3 fatty acid content of red blood cell membranes in preterm infants. Pediatr Res 1987;21:507–510.

    PubMed  CAS  Google Scholar 

  105. Neuringer M, Connor WE, Lin DS, et al. Biochemical and functional effects of prenatal and postnatal n3 deficiency on retina and brain of rhesus monkeys. Proc Natl Acad Sci USA 1986;83:4021–4025.

    PubMed  CAS  Google Scholar 

  106. Neuringer M, Connor WE, Luck SL. Omega-3 fatty acid deficiency in rhesus monkeys: depletion of retinal docosahexaenoic acid and abnormal electroretinograms. Am J Clin Nutr 1985;43:706A.

    Google Scholar 

  107. Menon NK, Dhopeshwarkar GA. Essential fatty acid deficiency and brain development. Prog Lipid Res 1982;21:309–326.

    PubMed  CAS  Google Scholar 

  108. Anderson GJ, Connor WE. Uptake of fatty acids by the developing rat brain. Lipids 1988;23:286–290.

    PubMed  CAS  Google Scholar 

  109. Yamamoto N, Saito M, Moriuchi A, et al. Effect of dietary-linolenate/linoleate balance on brain lipid compositions and learning abilities of rats. J Lipid Res 1987;28:144–151.

    PubMed  CAS  Google Scholar 

  110. Bitman J, Wood DL, Liao TH, et al. Gastric lipolysis of milk lipids in suckling rats. Biochim Biophys Acta 1985;834:58–64.

    PubMed  CAS  Google Scholar 

  111. Aw TY, Grigor MR. Digestion and absorption of milk triacylglycerols in 14 day old suckling rats. J Nutr 1980;110:2133–2140.

    PubMed  CAS  Google Scholar 

  112. Hamosh M, Bitman J, Liao TH, et al. Gastric lipolysis and fat absorption in preterm infants: effect of MCT or LCT containing formulas. Pediatrics 1989;83:86–92.

    PubMed  CAS  Google Scholar 

  113. Putet G. Lipids as an energy source for the premature and full term neonate. In Polin RA, Fox WW, eds: Neonatal and Fetal Medicine. Philadelphia: Saunders, 1991 (in press).

    Google Scholar 

  114. Sarda P, Lepage G, Roy CC, et al. Storage of medium-chain triglycerides in adipose tissue of orally fed infants. Am J Clin Nutr 1987;45:399–405.

    PubMed  CAS  Google Scholar 

  115. Mehta NR, Hamosh M, Bitman J, et al. Adherence of medium-chain fatty acids to feeding tubes during gavage feeding of human milk fortified with medium-chain triglycerides. J Pediatr 1988;112:374–376.

    Google Scholar 

  116. Mehta NR, Hamosh M, Bitman J, et al. Fat loss during gavage feeding: effect of MCT oil supplementation. Pediatr Res 1989;25:932A.

    Google Scholar 

  117. Hamosh M, Klaeveman HL, Wolf RO, et al. Pharyngeal lipase and digestion of dietary triglycerides in man. J Clin Invest 1975;55:908–913.

    PubMed  CAS  Google Scholar 

  118. Hamosh M, Burns WA. Lipolytic activity of human lingual glands (Ebner). Lab Invest 1977;37:603–608.

    PubMed  CAS  Google Scholar 

  119. DeNigris SJ, Hamosh M, Kasbekar DK, et al. Human gastric lipase: secretion from dispersed gastric glands. Biochim Biophys Acta 1985;836:67–72.

    PubMed  CAS  Google Scholar 

  120. Hamosh M. Fat digestion in the newborn: role of lingual lipase and preduodenal digestion. Pediatr Res 1979;13:615–622.

    PubMed  CAS  Google Scholar 

  121. Roy CC, Roulet M, Lefebre D, et al. The role of gastric lipolysis in fat absorption and bile acid metabolism in the rat. Lipids 1979;14:811–814.

    PubMed  CAS  Google Scholar 

  122. Plucinski TM, Hamosh M, Hamosh P. Fat digestion in the rat: role of lingual lipase. Am J Physiol 1979;237: E541–E547.

    PubMed  CAS  Google Scholar 

  123. Watkins JB. Mechanism of fat absorption and the development of gastrointestinal function. Pediatr Clin North Am 1975;22:721–730.

    PubMed  CAS  Google Scholar 

  124. Hamosh M. Lingual and breast milk lipases. Adv Pediatr 1982;29:33–67.

    PubMed  CAS  Google Scholar 

  125. Abrams CK, Hamosh M, Hubbard VS, et al. Lingual lipase in cystic fibrosis: quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J Clin Invest 1984;73:374–382.

    PubMed  CAS  Google Scholar 

  126. Abrams CK, Hamosh M, Dutta SK, et al. Role of nonpancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 1987;92:125–129.

    PubMed  CAS  Google Scholar 

  127. Patton JS, Rigler MW, Liao TH, et al. Hydrolysis of triacylglycerol emulsions by lingual lipase — a microscopic study. Biochim Biophys Acta 1982;712: 400–407.

    PubMed  CAS  Google Scholar 

  128. Jensen RG, Clark RM, de Jong FA, et al. The lipolytic triad: human lingual, breast milk and pancreatic lipases: physiological implications of their characteristics in digestion of dietary fat. J Pediatr Gastroenterol Nutr 1982;1:243–255.

    PubMed  CAS  Google Scholar 

  129. DiNigris SJ, Hamosh M, Kasbekar DK, et al. Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in localization of gastric lipase. Biochim Biophys Acta 1988;959:38–45.

    Google Scholar 

  130. Moreau H, Gargouri Y, Lecat D, et al. Screening of preduodenal lipases in several mammals. Biochim Biophys Acta 1988;959:247–252.

    PubMed  CAS  Google Scholar 

  131. DiPalma J, Kirk C, Hamosh M, et al. Nutrient digestion in the stomach: high lipase and pepsin activity in the gastric mucosa of infants and children. Pediatr Res 1989;25:110A.

    Google Scholar 

  132. DiPalma J, Kirk C, Hamosh M, et al. Lipase and pepsin activity in the gastric mucosa of children and the role of lipase as a marker for gastrointestinal inflammation. Clin Res 1989;37:367A.

    Google Scholar 

  133. Rossi TM. Effects of total parenteral nutrition on the digestive organs. In Lebenthal E, ed: Total Parenteral Nutrition: Indications, Utilization, Complications, and Pathophysiological Considerations. New York: Raven Press, 1986;173–184.

    Google Scholar 

  134. Mehta NR, Liao TH, Hamosh M, et al. Effect of total parenteral nutrition on lipase activity in the stomach of very low birth weight infants. Biol Neonate 1988;53:261–266.

    PubMed  CAS  Google Scholar 

  135. Carey MC, Small DM, Bliss CM: Lipid digestion and absorption. Annu Rev Physiol 1983;45:651–677.

    PubMed  CAS  Google Scholar 

  136. Freudenberg E. Die frauenmilch Lipase. Basel: Karger, 1953.

    Google Scholar 

  137. Freed LM, Berkow SE, Hamosh P, et al. Lipases in human milk: effect of gestational age and length of lactation on enzyme activity. J Am Coll Nutr 1989;8: 143–150.

    PubMed  CAS  Google Scholar 

  138. Stremmel W, Lotz G, Strohmeyer G, et al. Identification, isolation and partial characterization of a fatty acid binding protein from rat jejunal microvillus membranes. J Clin Invset 1985;75:1068–1076.

    CAS  Google Scholar 

  139. Ockner RK, Manning JM. Fatty acid binding protein in small intestine: identification, isolation and evidence for its role in cellular fatty acid transport. J Clin Invest 1974;54:326–338.

    PubMed  CAS  Google Scholar 

  140. Johnston JM. Triglyceride biosynthesis in the intestinal mucosa. In Rommell KH, Goebell H, Bohmer R, eds: Lipid Absorption: Biochemical and Clinical Aspects. Lancaster, UK: MTP, 1976;85–94.

    Google Scholar 

  141. Holzapple PG, Smith G, Koldowsky O. Uptake, activation and esterification of fatty acids in the small intestine of the suckling rat. Pediatr Res 1975;9:786–791.

    Google Scholar 

  142. Tso P, Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 1986;250:G715–G726.

    PubMed  CAS  Google Scholar 

  143. Eisenberg S. Very low density lipoprotein metabolism. Prog Biochem Pharmacol 1979;15:139–165.

    PubMed  CAS  Google Scholar 

  144. Glomset JA. Lecithin:cholesterol acytransferase: an exercise in comparative biology. Prog Biochem Pharmacol 1976;15:41–46.

    Google Scholar 

  145. Bougneres PF, Lemmel C, Ferre P, et al. Ketone body transport in the human neonate and infant. J Clin Invest 1986;77:42–48.

    PubMed  CAS  Google Scholar 

  146. Edmond J, Anestad N, Robbins RA, Bergstrom JD. Ketone body metabolism in the neonate: development and effect of diet. Fed Proc 1985;44:2359–2364.

    PubMed  CAS  Google Scholar 

  147. Yeh YY, Sheehan PM. Preferential utilization of ketone bodies in the brain and lung of newborn rats. Fed Proc 1985;44:2352–2358.

    PubMed  CAS  Google Scholar 

  148. Williamson DH. Ketone body production and metabolism in the fetus and newborn. In Polin RA, Fox WW, eds: Neonatal and Fetal Medicine. Philadelphia: Saunders, 1991 (in press).

    Google Scholar 

  149. American Academy of Pediatrics, Committee on Nutrition. Nutritional needs of low-birth-weight infants. Pediatrics 1985;76:976–986.

    Google Scholar 

  150. Stahl GE, Spear ML, Hamosh M. Intravenous administration of lipid emulsion to premature infants. Clin Perinatol 1986;13:133–162.

    PubMed  CAS  Google Scholar 

  151. Hamosh M, Berkow SE, Chowdhry P, et al. Lipid clearing in parenterally fed low birth weight infants: enzyme status at birth and the effect of infusion regimen on lipid catabolism. In Stern L, Oh W, Friis-Hansen B, eds: Physiologic Foundations of Perinatal Care. New York: Elsevier, 1987;72–84.

    Google Scholar 

  152. Papdopoulos A, Hamosh M, Chowdhry P, et al. Lecithin:cholesteroly acyl transferase in the newborn: low activity level in preterm infants. J Pediatr 1988;113: 896–898.

    Google Scholar 

  153. Amr S, Hamosh P, Hamosh M. Effect of Intralipid infusion on lecithin:cholesteroly acyl transferase and lipoprotein lipase in young rats. Biochim Biophys Acta 1989;1001:145–149.

    PubMed  CAS  Google Scholar 

  154. Rovamo L, Nikkila EA, Taskinen MR, et al. Postheparin plasma lipoprotein and hepatic lipases in preterm neonates. Pediatr Res 1984;18:1104–1107.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hamosh, M. (1991). Neonatal Lipid Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics