Skip to main content

Inborn Errors of Amino Acid and Organic Acid Metabolism

  • Chapter
Principles of Perinatal-Neonatal Metabolism
  • 362 Accesses

Abstract

Each of the 30–40 inborn errors of amino acid or organic acid metabolism represents a rare occurrence in pediatrics. The combined incidence is about 1:4000 during the neonatal period. Their importance derives from what they tell us about normal metabolism and that these diseases are generally treatable if detected early. In this chapter the development of selected amino acid enzymes, the pathways of amino acid and organic acid catabolism, and the specific amino-acidopathies and organic acidurias that present symptoms during the neonatal period are discussed. These disorders include the organic acidemias, such as propionic acidemia, methylmalonic acidemia, glutaric acidemia type II, and multiple carboxylase deficiency;the urea cycle disorders;maple syrup urine disease;and nonketotic hyperglycinemia. The biochemistry, approaches to treatment, and outcome of these disorders are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Remesar X, Lopez-Tejero D, Pastor-Anglada M. Some aspects of amino acid metabolism in the rat fetus. Comp Biochem Physiol 1987;88B:719–725.

    CAS  Google Scholar 

  2. Miller AL, Chu P. The development of urea cycle enzyme activity in the liver of foetal and neonatal rats. Enzymol Biol Clin 1970;11:497–503.

    CAS  Google Scholar 

  3. Greengard O. Enzymic differentiation in mammalian tissues. Essays Biochem 1971;7:159–205.

    PubMed  CAS  Google Scholar 

  4. Arola L, Palou A, Remesar X, et al. Changes in glutamine synthetase activity in the different organs of developing rats. Arch Int Physiol Biochim 1981;89: 189–194.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman PA, Kaufman S. A study of the development of phenylalanine hydroxylase in fetuses of several mammalian species. Arch Biochem Biophys 1971;146:321–326.

    Article  PubMed  CAS  Google Scholar 

  6. Arola L, Palou A, Remesar X, et al. Amino-acid enzyme activities in liver and kidney of developing rats. Arch Int Physiol Biochim 1982;90:163–171.

    Article  PubMed  CAS  Google Scholar 

  7. Jakovcic S, Haddock J, Getz GS, et al. Mitochondrial development in liver of foetal and newborn rats. Biochem J 1971;121:341–347.

    PubMed  CAS  Google Scholar 

  8. Palou A, Remesar X, Arola L, et al. Ontogeny of amino-acid metabolism—enzymes in peripheral tissues of developing rats. Arch Int Physiol Biochim 1983;91:43–50.

    Article  PubMed  CAS  Google Scholar 

  9. Remesar X, Arola LI, Palou A, et al. Activities of amino acid metabolizing enzymes in the stomach and small intestine of developing rats. Reprod Nutr Dev 1985;25:861–866.

    Article  PubMed  CAS  Google Scholar 

  10. Arola LI, Palou A, Remesar X, et al. Amino acid enzyme activities in the brain of developing rats. IRCS Med Sci 1983;11:514–515.

    CAS  Google Scholar 

  11. Raiha NCR, Suihkonen J. Development of urea synthesizing enzymes in human liver. Acta Paediatr Scand 1968;57:121–124.

    Article  PubMed  CAS  Google Scholar 

  12. Boehm G, Muller DM, Beyreiss K, et al. Evidence for functional immaturity of the ornithine-urea cycle in very-low-birth-weight infants. Biol Neonate 1988;54: 121–125.

    Article  PubMed  CAS  Google Scholar 

  13. Snell K. Protein, amino acid and urea metabolism in the neonate. In Jones CT, ed: Biochemical Development of the Fetus and Neonate. Amsterdam: Elsevier, 1982;651–695.

    Google Scholar 

  14. Batshaw ML, Brusilow SW. Asymptomatic hyperammonemia in low birthweight infants. Pediatr Res 1978;12:221–224.

    PubMed  CAS  Google Scholar 

  15. Batshaw ML, Wachtel RC, Brusilow SW, et al. Argi-nine responsive asymptomatic hyperammonemia in the premature infant. J Pediatr 1984;105:86–91.

    Article  PubMed  CAS  Google Scholar 

  16. Hudak ML, Jones MD Jr, Brusilow SW. Differentiation of transient hyperammonemia of the newborn and urea cycle enzyme defects by clinical presentation. J Pediatr 1985;107:712–719.

    Article  PubMed  CAS  Google Scholar 

  17. Rice DN, Houston IB, Lyon ICT, et al. Transient neonatal tyrosinaemia. J Inner Metab Dis 1989;12:13–22.

    Article  CAS  Google Scholar 

  18. Scriver CR, Kaufman S, Woo SLC. The hyperphenyl-alaninemias. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill, 1989;495–546.

    Google Scholar 

  19. Mamunes P, Prince PE, Thornton NH, et al. Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 1976;57:675–680.

    PubMed  CAS  Google Scholar 

  20. Menkes JH, Welcher DW, Levi HS, et al. Relationship of elevated blood tyrosine to the ultimate intellectual performance of premature infants. Pediatrics 1972;49:218–224.

    PubMed  CAS  Google Scholar 

  21. Gaull G. Taurine in pediatric nutrition: review and update. Pediatrics 1989;83:433–442.

    PubMed  CAS  Google Scholar 

  22. Tyson JE, Lasky R, Flood D, et al. Randomized trial of taurine supplementation for infants < 1,300-gram weight: effect on auditory brainstem-evoked responses. Pediatrics 1989;83:406–415.

    PubMed  CAS  Google Scholar 

  23. Goodman SI, Reale M, Berlow S. Glutaric acidemia type II: a form with deleterious intrauterine effects. J Pediatr 1983;102:411–413.

    Article  PubMed  CAS  Google Scholar 

  24. Batshaw ML. Hyperammonemia. Curr Probl Pediatr 1984;14(11):1–69.

    Article  PubMed  CAS  Google Scholar 

  25. Meijer AJ, Verhoeven AJ. N-Acetylglutamate and urea synthesis. Biochem J 1984;223:559–560.

    PubMed  CAS  Google Scholar 

  26. Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1973;1:169–187.

    Article  PubMed  CAS  Google Scholar 

  27. Berry GT. Disorders of amino acid metabolism. In Walker WA, Durie PR, Hamilton JR, et al., eds: Pediatric Gastrointestinal Disease. Philadelphia: BC Decker, 1990.

    Google Scholar 

  28. Ricciuti FC, Gelehrter TD, Rosenberg LE. X-Chro-mosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase. Am J Hum Genet 1976;28:332–338.

    PubMed  CAS  Google Scholar 

  29. Msall M, Batshaw ML, Suss R, et al. Neurologic outcome of children with inborn errors of urea synthesis. N Engl J Med 1984;310:1500–1505.

    Article  PubMed  CAS  Google Scholar 

  30. Donn SM, Swartz RD, Thoene JG. Comparison of exchange transfusion, peritoneal dialysis, and hemodialysis for the treatment of hyperammonemia in an anuric newborn infant. J Pediatr 1979;95:67–70.

    Article  PubMed  CAS  Google Scholar 

  31. Batshaw ML, Brusilow SW Treatment of hyperammonemic coma caused by inborn errors of urea synthesis. J Pediatr 1980;97:893–900.

    Article  PubMed  CAS  Google Scholar 

  32. Brusilow SW Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest 1984;74:2144–2148.

    Article  PubMed  CAS  Google Scholar 

  33. Snyderman SE, Sansaricq C, Phansalkar SV, et al. The therapy of hyperammonemia due to ornithine transcarbamylase deficiency in a male neonate. Pediatrics 1975;56:65–73.

    PubMed  CAS  Google Scholar 

  34. Rosenberg LE, Fenton WA. Disorders of propionate and methylmalonate metabolism In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: Inherited Basis of Metabolic Disease, 6th ed. New York: McGraw-Hill, 1989;821–844.

    Google Scholar 

  35. Batshaw ML, Brusilow SW, Waber L, et al. Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med 1982;306:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  36. Wolf B, Hsia YE, Sweetman L, et al. Multiple carboxylase deficiency: clinical and biochemical improvement following neonatal biotin treatment. Pediatrics 1981;68:113–118.

    PubMed  CAS  Google Scholar 

  37. Tuchman M. Persistent acitrullinemia after liver transplantation for carbamylphosphate synthetase deficiency. N Engl J Med 1989;320:1498–1499.

    Article  PubMed  CAS  Google Scholar 

  38. Brewster TG, Moskowitz MA, Kaufman S, et al. Dihydropteridine reductase deficiency associated with severe neurologic disease and mild hyperphenyl-alaninemia. Pediatrics 1979;63:94–99.

    PubMed  CAS  Google Scholar 

  39. Brusilow SW, Horwich AL. Urea cycle enzymes. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: The Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill, 1989;.629–664.

    Google Scholar 

  40. Bartholomew D, Reichel R, Brusilow S. Prospective diagnosis and treatment of urea cycle disorders. Pediatr Res 1987;21:288A.

    Google Scholar 

  41. Steinman L, Clancy RR, Cann H, et al. The neuropathology of propionic acidemia. Dev Med Child Neurol 1983;25:87–94.

    Article  PubMed  CAS  Google Scholar 

  42. Filloux F, Townsend JJ, Leonard C. Ornithine transcarbamylase deficiency: neuropathologic changes acquired in utero. J Pediatr 1986;108:942–945.

    Article  PubMed  CAS  Google Scholar 

  43. Goodman SI, Stene DO, Mccabe ERB, et al. Glutaric acidemia type II: clinical, biochemical and morphologic considerations. J Pediatr 1982;100:946–950.

    Article  PubMed  CAS  Google Scholar 

  44. Hyman SL, Coyle JT, Parke JC, et al. Anorexia and altered serotonin metabolism in a patient with argininosuccinic aciduria. J Pediatr 1986;108:705–709.

    Article  PubMed  CAS  Google Scholar 

  45. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. TINS 1987;10:299–302.

    CAS  Google Scholar 

  46. Bachmann C, Colombo JP, Jaggi K. N-Acetylglutamate synthetase deficiency;diagnosis, clinical observations and treatment. In Lowenthal A, Mori A, Marescau B, eds: Urea Cycle Diseases. New York: Plenum Press, 1983;39–45.

    Google Scholar 

  47. Snyderman SE, Sansaricq C, Chen WJ, et al. Argi-ninemia. J Pediatr 1977;90:563–568.

    CAS  Google Scholar 

  48. Holtzman NA, Batshaw ML, Valle DL. Genetic aspects of human nutrition. In Goodhart RS, Shils ME, eds: Modern Nutrition in Health and Disease, 6th ed. Philadelphia: Lea & Febiger, 1980;1193–1219.

    Google Scholar 

  49. Shih VE. Hereditary urea-cycle disorders. In Grisolia S, Baguena R, Mayor F, eds: The Urea Cycle. New York: Wiley, 1976;367–414.

    Google Scholar 

  50. Potter JL, Timmons GD, Silvida AA. Argininosuccinic aciduria—the hair abnormality revisited. Am J Dis Child 1980;134:1095–1096.

    PubMed  CAS  Google Scholar 

  51. Kline JJ, Hug G, Schubert WK, et al. Arginine deficiency syndrome: its occurrence in carbamyl phosphate synthetase deficiency. Am J Dis Child 1981;135:437–442.

    PubMed  CAS  Google Scholar 

  52. Labrecque DR, Latham PS, Riely CA, et al. Heritable urea cycle enzyme deficiency—liver disease in 16 patients. J Pediatr 1979;94:580–587.

    Article  PubMed  CAS  Google Scholar 

  53. Farriaux JP, Dhondt JL, Formstecher P, et al. [Pathological and biochemical studies on a neonatal case of argininosuccinic aciduria]. Acta Neurol Belg 1976;76: 26–34.

    PubMed  CAS  Google Scholar 

  54. Ohtani Y, Ohyanagi K, Yamamoto S, et al. Secondary carnitine deficiency in hyperammonemic attacks of ornithine transcarbamylase deficiency. J Pediatr 1988;112:409–414.

    Article  PubMed  CAS  Google Scholar 

  55. Bachmann C, Colombo JP. Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic aciduria. Eur J Pediatr 1980;134:109–113.

    Article  PubMed  CAS  Google Scholar 

  56. Batshaw M, Brusilow S, Walser M. Treatment of carbamyl phosphate synthetase deficiency with ketoana-logues of essential amino acids. N Engl J Med 1975;292:1085–1090.

    Article  PubMed  CAS  Google Scholar 

  57. Brusilow SW, Batshaw ML. Arginine treatment of argininosuccinase deficiency. Lancet 1979;1:124–127.

    Article  PubMed  CAS  Google Scholar 

  58. Brusilow SW, Tinker J, Batshaw ML. Amino acid acy-lation: a mechanism of nitrogen excretion in inborn errors of urea synthesis. Science 1982;207:659–661.

    Article  Google Scholar 

  59. Kendall BE, Kingsley DP, Leonard JV, et al. Neurological features and computed tomography of the brain in children with ornithine carbamoyl transferase deficiency. J Neurol Neurosurg Psychiatry 1983;46: 28–34.

    Article  PubMed  CAS  Google Scholar 

  60. Rozen R, Fox JE, Hack AM, et al. DNA analysis for ornithine transcarbamylase deficiency. J Inher Metab Dis 1986;9(suppl 1):49–57.

    Article  PubMed  CAS  Google Scholar 

  61. Childs B, Nyhan WL, Borden M, et al. Idiopathic hyperglycinemia and hyperglycinuria: a new disorder of amino acid metabolism. Pediatrics 1961;27:522–538.

    PubMed  CAS  Google Scholar 

  62. Sweetman L, Nyhan WL, Cravens J, et al. Propionic acidaemia presenting with pancytopaenia in infancy. J Inher Metab Dis 1980;2:65–69.

    Article  PubMed  CAS  Google Scholar 

  63. Harris DJ, Yang B, Wolf B, et al. Dysautonomia in an infant with secondary hyperammonemia due to propionyl CoA carboxylase deficiency. J Med Genet 1981;18:156–157.

    Article  PubMed  CAS  Google Scholar 

  64. Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria: a possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 1979;64:1544–1551.

    Article  PubMed  CAS  Google Scholar 

  65. Wolf B, Hsia YE, Tanaka K, et al. Correlation between serum propionate and blood ammonia concentrations in propionic acidemia. J Pediatr 1978;93:471–473.

    Article  PubMed  CAS  Google Scholar 

  66. Chalmers RA, Roe CR, Stacey TE, et al. Urinary excretion of 1-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of 1-carnitine. Pediatr Res 1984;18:1325–1328.

    Article  PubMed  CAS  Google Scholar 

  67. Perry TL, Urquhart N, Maclean J, et al. Nonketotic hyperglycinemia: glycine accumulation due to absence of glycine cleavage in brain. N Engl J Med 1975;292: 1269–1273.

    Article  PubMed  CAS  Google Scholar 

  68. Wolf B, Hsia YE, Sweetman L, et al. Propionic acidemia: a clinical update. J Pediatr 1981;99:835–846.

    Article  PubMed  CAS  Google Scholar 

  69. Stork LC, Ambruso DR, Wallner SF, et al. Pancytopenia in propionic acidemia: hematologic evaluation and studies of hematopoiesis in vitro. Pediatr Res 1986;20: 783–788.

    Article  PubMed  CAS  Google Scholar 

  70. Cowan WJ, Wara DW, Packman S, et al. Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet 1979;2:115–118.

    Article  PubMed  CAS  Google Scholar 

  71. Wolf B. Reassessment of biotin-responsiveness in “unresponsive” propionyl CoA carboxylase deficiency. J Pediatr 1980;97:964–966.

    Article  PubMed  CAS  Google Scholar 

  72. Roe CR, Hoppel CL, Stacey TE, et al. Metabolic response to carnitine in methylmalonic aciduria: an effective strategy for elimination of propionyl groups. Arch Dis Child 1983;58:916–920.

    Article  PubMed  CAS  Google Scholar 

  73. Saunders M, Sweetman L, Robinson B, et al. Biotin-responsive organicaciduria: multiple carboxylase defects and complementation studies with propionic acidemia in cultured fibroblasts. J Clin Invest 1979;64:1695–1702.

    Article  PubMed  CAS  Google Scholar 

  74. Sweetman L, Nyhan WL, Sakati NA, et al. Organic aciduria in neonatal multiple carboxylase deficiency. J Inherit Metab Dis 1982;5:49–53.

    Article  PubMed  CAS  Google Scholar 

  75. Roth KS, Yang W, Foremann JW, et al. Holocarboxylase synthetase deficiency: a biotin-responsive organic acidemia. J Pediatr 1980;96:845–849.

    Article  PubMed  CAS  Google Scholar 

  76. Wolf B, Grier RE, Allen RJ, et al. Biotinidase deficiency: the enzymatic defect in late-onset multiple carboxylase deficiency. Clin Chim Acta 1983;131:273–281.

    Article  PubMed  CAS  Google Scholar 

  77. Roth KS. Prenatal treatment of multiple carboxylase deficiency. Ann NY Acad Sci 1985;447:263–271.

    Article  PubMed  CAS  Google Scholar 

  78. Michalski AJ, Berry GT, Segal S. Holocarboxylase synthetase deficiency: nine year follow-up of a patient on chronic biotin therapy and a review of the literature. J Inherit Metab Dis 1989;12:312–316.

    Article  PubMed  CAS  Google Scholar 

  79. Coulombe JT, Shih VE, Levy HL. Massachusetts metabolic disorders screening program. II. Methylmalonic aciduria. Pediatrics 1981;76:26–31.

    Google Scholar 

  80. Matsui SM, Mahoney MJ, Rosenberg LE. The natural history of the inherited methylmalonic acidemias. N Engl J Med 1983;308:857–861.

    Article  PubMed  CAS  Google Scholar 

  81. Shapiro LJ, Bocian ME, Raijman L, et al. Methylmalonyl-CoA mutase deficiency associated with severe neonatal hyperammonemia: activity of urea cycle enzymes. J Pediatr 1978;93:986–988.

    Article  PubMed  CAS  Google Scholar 

  82. Bartholamew DW, Batshaw ML, Allen RH, et al. Therapeutic approaches to cobalamin-C methylmalonic acidemia and homocystinuria. J Pediatr 1988;112:32–39.

    Article  Google Scholar 

  83. Rosenblatt DS, Laframboise R, Pichette J, et al. New disorder of vitamin B12 metabolism (cobalamin F) presenting as methylmalonic aciduria. Pediatrics 1986;78:51–54.

    PubMed  CAS  Google Scholar 

  84. Broyer M, Guesry P, Burgers EA, et al. Acidemic methyl malonique avec nephropathic hyperurice-nique. Arch Fr Pediatr 1974;31:543–552.

    PubMed  CAS  Google Scholar 

  85. Heidenreich R, Natowicz M, Hainline BE, et al. Acute extrapyramidal syndrome in methylmalonic acidemia: “metabolic stroke” involving the globus pallidus. J Pediatr 1988;113:1022–1027.

    Article  PubMed  CAS  Google Scholar 

  86. Whelan DT, Ryan E, Spate M, et al. Methylmalonic acidemia: 6 years’ clinical experience with two variants unresponsive to vitamin B12 therapy. Can Med Assoc J 1979;120:1230–1235.

    PubMed  CAS  Google Scholar 

  87. Dayan AD, Ramsey RB. An inborn error of vitamin B12 metabolism associated with cellular deficiency of coenzyme forms of the vitamin. J Neurol Sci 1974;23:117–128.

    Article  PubMed  CAS  Google Scholar 

  88. Sweetman L. Branched chain organic acidurias. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: The Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill, 1989;791–819.

    Google Scholar 

  89. Tanaka K, Isselbacher KJ. The isolation and identification of N-isovalerylglycine from urine of patients with isovaleric acidemia. J Biol Chem 1967;242: 2966–2972.

    PubMed  CAS  Google Scholar 

  90. Berry GT, Yudkoff M, Segal S. Isovaleric acidemia: medical and neurodevelopmental effects of long-term therapy. J Pediatr 1988;113:58–64.

    Article  PubMed  CAS  Google Scholar 

  91. Roe CR, Millington DS, Malthy DA, et al. L-Carnitine therapy in isovaleric acidemia. J Clin Invest 1984;74: 2290–2295.

    Article  PubMed  CAS  Google Scholar 

  92. Hine DG, Hack AM, Goodman SI, et al. Stable isotope dilation analysis of isovalerylglycine in amniotic fluid and urine and its application for the prenatal diagnosis of isovaleric acidemia. Pediatr Res 1986;20: 222–226.

    Article  PubMed  CAS  Google Scholar 

  93. Cohn RM, Yudkoff M, Rothman R, et al. Isovaleric acidemia: use of glycine therapy in neonates. N Engl J Med 1978;299:996–999.

    Article  PubMed  CAS  Google Scholar 

  94. Schutgens RBH, Wanders RJA, Nijenhuis A, et al. Genetic diseases caused by peroxisomal dysfunction. Enzyme 1987;38:161–176.

    PubMed  CAS  Google Scholar 

  95. Goodman SI, Frerman FE, Loehr JP. Recent progress in understanding glutaric acidemias. Enzyme 1987;38:76–79.

    PubMed  CAS  Google Scholar 

  96. Lipkin PH, Roe CR, Goodman SI, et al. A case of glutaric acidemia type I: effect of riboflavin and carnitine. J Pediatr 1988;112:62–65.

    Article  PubMed  CAS  Google Scholar 

  97. Amendt BA, Rhead WJ. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria: mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. J Clin Invest 1986;78:205–213.

    Article  PubMed  CAS  Google Scholar 

  98. Hoganson G, Berlow S, Gilbert EF, et al. Glutaric acidemia type II and flavin-dependent enzymes in morphogenesis. Birth Defects 1987;23:65–74.

    PubMed  CAS  Google Scholar 

  99. Gregersen N, Wintzensen H, Christensen SK, et al. C6-C10-Dicarboxylic aciduria: investigations of a patient with riboflavin responsive multiple acyl-CoA dehydrogenation defects. Pediatr Res 1982;16:861–868.

    Article  PubMed  CAS  Google Scholar 

  100. Frerman FE, Goodman SI. Glutaric acidemia type II and defects of the mitochondrial respiratory chain. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: The Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill, 1989;915–931.

    Google Scholar 

  101. Sweetman L, Nyhan WL, Trauner DA, et al. Glutaric aciduria type II. J Pediatr 1980;96:1020–1026.

    Article  PubMed  CAS  Google Scholar 

  102. Mitchell G, Saudubray JM, Benoit Y, et al. Antenatal diagnosis of glutaricaciduria type II. Lancet 1983;1: 1099.

    Article  PubMed  CAS  Google Scholar 

  103. Danner DJ, Elsas LJ. Disorders of branched chain amino acid and keto acid metabolism. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: The Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill, 1989;671–692.

    Google Scholar 

  104. Scriver CR, Mackenzie S, Clow CL, et al. Thiamine responsive maple syrup urine disease. Lancet 1971;1: 310–312.

    Article  PubMed  CAS  Google Scholar 

  105. Danner DJ, Armstrong N, Heffelfinger SC, et al. Absence of branched chain acyl-transferase as a cause of maple syrup urine disease. J Clin Invest 1985;75: 858–860.

    Article  PubMed  CAS  Google Scholar 

  106. Robinson BH, Taylor J, Sherwood WG. Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and alpha-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy. Pediatr Res 1977;11:1198–1202.

    PubMed  CAS  Google Scholar 

  107. DiGeorge AM, Rezvani I, Gaibaldi LR, et al. Prospective study of maple-syrup-urine disease for the first four days of life. N Engl J Med 1982;307:1492–1495.

    Article  PubMed  CAS  Google Scholar 

  108. Mantovani JF, Naidich TP, Prensky AL, et al. MSUD: presentation with pseudotumor cerebri and CT abnormalities. J Pediatr 1980;96:279–281.

    Article  PubMed  CAS  Google Scholar 

  109. Mikati MA, Dudin GE, Der Kaloustian VM, et al. Maple syrup urine disease with increased intracranial pressure. Am J Dis Child 1982;136:642–643.

    PubMed  CAS  Google Scholar 

  110. Lungarotti MS, Calabro A, Signorini E, et al. Cerebral edema in maple syrup urine disease. Am J Dis Child 1982;136:648.

    PubMed  CAS  Google Scholar 

  111. Snyderman SE, Norton PM, Roitman E, et al. Maple syrup urine disease with particular reference to dietotherapy. Pediatrics 1964;34:454–472.

    PubMed  CAS  Google Scholar 

  112. Silberman J, Dancis J, Feigin IH. Neuropathological observations in maple syrup urine disease: branched chain ketoaciduria. Arch Neurol 1961;5:351–363.

    Article  PubMed  CAS  Google Scholar 

  113. Kindt E, Halvorsen S. The need of essential amino acids in children: an evaluation based on the intake of phenylalanine tyrosine, leucine, isoleucine and valine in children with phenylketonuria, tyrosine amino transferase defect and maple syrup urine disease. Am J Clin Nutr 1980;33:279–286.

    PubMed  CAS  Google Scholar 

  114. Fernhoff PM, Lubitz D, Danner DJ, et al. Thiamine response in maple syrup urine disease. Pediatr Res 1985;19:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  115. Berry GT, Heidenreich R, Kaplan P, et al. Branchedchain amino acid-free parenteral nutrition in the treatment of acute metabolic decompensation in patients with maple syrup urine disease. N Engl J Med 1991;324:175–179.

    Article  PubMed  CAS  Google Scholar 

  116. Gerritsen T, Kaveggia E, Waisman HA. A new type of idiopathic hyperglycinemia with hypo-oxaluria. Pediatrics 1965;36:882–891.

    PubMed  CAS  Google Scholar 

  117. Perry TL, Urquhart N, MacLean J, et al. Nonketotic hyperglycinemia: glycine accumulation due to absence of glycine cleavage in brain. N Engl J Med 1975;292:1269–1273.

    Article  PubMed  CAS  Google Scholar 

  118. Perry TL, Urquhart N, Hansen S. Studies of the glycine cleavage enzyme system in brain from infants with glycine encephalopathy. Pediatr Res 1977;11:1192–1197.

    Article  PubMed  CAS  Google Scholar 

  119. Hayasaka K, Tada K, Fueki N, et al. Nonketotic hyperglycinemia: analyses of glycine cleavage system in typical and atypical cases. J Pediatr 1987;110:873–877.

    Article  PubMed  CAS  Google Scholar 

  120. Tada K. Non ketotic hyperglycinemia: clinical and metabolic aspects. Enzyme 1987;38:27–35.

    PubMed  CAS  Google Scholar 

  121. Wolff JA, Kulovich S, Yu AL, et al. The effectiveness of benzoate in the management of seizures in nonketotic hyperglycinemia. Am J Dis Child 1986;140:596–602.

    PubMed  CAS  Google Scholar 

  122. De Groot CJ, Troelstra JA, Hommes FA. Nonketotic hyperglycinemia: an in vitro study of the glycine-serine conversion in liver of three patients and the effect of dietary methionine. Pediatr Res 1970;4:238–243.

    PubMed  Google Scholar 

  123. Gitzelmann R, Steinmann B, Otten A, et al. Nonketotic hyperglycinemia treated with strychnine, a glycine receptor antagonist. Helv Paediatr Acta 1977;32:517–525.

    Google Scholar 

  124. Matalon R, Naidu S, Hughes JR, et al. Nonketotic hyperglycinemia: treatment with diazepam—a competitor for glycine receptors. Pediatrics 1983;71:581–584.

    PubMed  CAS  Google Scholar 

  125. Von Wendt L, Simila S, Saukkonen A-L, et al. Failure of strychnine treatment during the neonatal period in three Finnish children with nonketotic hyperglycinemia. Pediatrics 1980;65:1166–1169.

    Google Scholar 

  126. El-Defrawy SR, Boegman RJ, Jhamandas K, et al. The neurotoxic actions of quinolinic acid in the central nervous system. Can J Physiol Pharmacol 1986;64: 369–375.

    Article  PubMed  CAS  Google Scholar 

  127. McDonald JW, Johnston MV. Nonketotic hyperglycinemia: pathophysiological role of NMDA-type excitatory amino acid receptors. Ann Neurol 1990;27: 449–450 (letter).

    Article  PubMed  CAS  Google Scholar 

  128. Huettner JE. Indole-2-carboxylic acid: a competitive antagonist of potentiation by glycine at the NMDA receptor. Science 1989;243:1611–1613.

    Article  PubMed  CAS  Google Scholar 

  129. Brun A, Borjeson M, Hultberg B, et al. Neonatal nonketotic hyperglycinemia: a clinical, biochemical and neuropathological study including electron microscopic findings. Neuropadiatrie 1979;10:195–205.

    Article  PubMed  CAS  Google Scholar 

  130. Hayasaka K, Tada K, Fueki N, et al. Feasibility of prenatal diagnosis of nonketotic hyperglycinemia: existence of the glycine cleavage system in placenta. J Pediatr 1987;110:124–126.

    Article  PubMed  CAS  Google Scholar 

  131. Butler IJ, Krumholz A, Holtzman A, et al. Dihidrop-teridine reductase deficiency variant of phenylketonuria: a disorder of neurotransmitters. Trans Am Neurol Assoc 1975;100:43–47.

    PubMed  CAS  Google Scholar 

  132. Lazarow PB, Moser HW. Disorders of peroxisome biosynthesis. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds: The Metabolic Basis of Inherited Disease, 6th ed. New York, McGraw-Hill, 1989;1479–1510.

    Google Scholar 

  133. Schram AW, Goldfischer S, van Roermund CWT, et al. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci USA 1987;84:2494–2496.

    Article  PubMed  CAS  Google Scholar 

  134. Schindler D, Bishop DF, Wolfe DE, et al. Neuroaxonal dystrophy due to lysosomal alpha-N-acetylgalactos-aminidase deficiency. N Engl J Med 1989;320:1735–1740.

    Article  PubMed  CAS  Google Scholar 

  135. Matalon R, Michals K, Sebesta D, et al. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with canavan disease. Am J Med Genet 1988;29:463–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Berry, G.T., Batshaw, M.L. (1991). Inborn Errors of Amino Acid and Organic Acid Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics