Skip to main content

Abstract

All living matter is based on the existence of protein. Protein plays an important role as the structural element of cells and extracellular matter, as the essential component of enzymes and hormones, as antibodies, and as many other endogenous compounds. Together with nucleic acids, protein forms inheritance factors that precisely reproduce the composition of numerous body proteins. Even minute changes in these factors can lead to severe disruption of protein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schönheimer R. The Dynamic State of Body Constituents. Cambridge: Harvard University Press, 1942.

    Google Scholar 

  2. Sander G, Hülsemann I, Topp H, et al. Protein and RNA turnover. Ann Nutr Metab 1986;30:137–142.

    PubMed  CAS  Google Scholar 

  3. Forbes RM, Cooper AR, Mitchel HH. The composition of the adult human body as determined by chemical analysis. J Biol Chem 1953;203:359–366.

    PubMed  CAS  Google Scholar 

  4. Abumrad NN, Cerosimo E, Lacy WW. Physiologic role of branched chain amino and keto acids in vivo. In Adibi SA, Fekl W, Langenbeck U, eds: Branched Chain Amino Acids in Health and Disease. Basel: Karger, 1984.

    Google Scholar 

  5. Alberts B, Bray D, Lewis I, et al. Molecular Biology of the Cell. New York: Garland Publishing, 1983.

    Google Scholar 

  6. Pain VW. Protein synthesis and its regulation. In Waterlow JC, Garlick PJ, Millward DJ, eds: Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland, 1978.

    Google Scholar 

  7. Schöch G, Sander G, Topp H, et al. Modified nucleosides and nucleobases in urine and serum as selective markers fort the whole-body turnover of tRNA, rRNA and mRNA-CAP: future prospects and impact. In Gehrke CW, Kuo KC, eds: Chromatographic and Other Analytical Methods in Nucleic Acids Modification Research, Vol. II. Modified Nucleosides in Cancer and Normal Metabolism. Amsterdam: Elsevier, 1989.

    Google Scholar 

  8. Cheek DB. Human Growth. Philadelphia: Lea & Febiger, 1968.

    Google Scholar 

  9. Waterlow JC, Garlick PJ, Millward DJ. Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland, 1978.

    Google Scholar 

  10. Wolfe RR. Tracers in Metabolic Research. Radioisotope and Stable Isotope Mass Spectrometry Methods. New York: Alan R Liss, 1984.

    Google Scholar 

  11. Waterlow JC, Stephen JML. Protein Metabolism in Man. London, NJ: Applied Science Publishers, 1981.

    Google Scholar 

  12. Sprinson DB, Rittenberg D. The rate of interaction of amino acids of the tissue proteins. J Biol Chem 1949;180:715–726.

    PubMed  CAS  Google Scholar 

  13. Winkler E, Faust H. A mathematical model for the analysis of the turnover of protein mixtures. I. General mathematical formalism. Acta Biol Med Ger 1981;40:227–238.

    PubMed  CAS  Google Scholar 

  14. Winkler E, Faust H. Theoretische Aspekte der Untersuchung des Stickstoffmetabolismus mit 15N beim Menschen. I. Allgemeine Grundlagen. Isotopenpraxis 1978;14:349–352.

    CAS  Google Scholar 

  15. Plath C, Heine W, Wutzke KD, et al. Investigations of the validity of various 15N-tracer substances (15N-amino acid mixture, 15N-glycine, 15N-yeast protein hydrolysate) for the determination of protein metabolism data in very small preterm infants. J Pediatr Gastroenterol Nutr 1987;6:400–408.

    PubMed  CAS  Google Scholar 

  16. Wutzke KD, Heine W, Drescher U, et al. 15N-labelled yeast protein—a valid tracer for calculating whole body protein parameters in infants: a comparison between (15N)-yeast protein and (15N)-glycine. Hum Nutr Clin Nutr 1983;37/C:317–327.

    Google Scholar 

  17. Picou D, Taylor-Roberts T. The measurement of total protein synthesis and catabolism and nitrogen turnover in infants receiving different amounts of dietary protein. Clin Sci 1969;36:283–296.

    PubMed  CAS  Google Scholar 

  18. Park W, Faust H, Knoblach G, et al. Untersuchungen zur Dynamik des Proteinmetabolismus mit 13C-markierten Aminosäuren. In Eckart I, Wolfram G, ed: Stabile Isotope in der Ernährungsforschung. Nicht-energetische Bedeutung von Fett. Reihe Klinische Ernährung. Munich: W. Zuckschwerdt, 1987;31:121–134.

    Google Scholar 

  19. Matthews DE, Motil KJ, Rohrbaugh DK, et al. Measurement of leucine metabolism in man from a primed continuous infusion of l 1–13C-leucine. Am J Physiol 1980;238/E:473–479.

    Google Scholar 

  20. Millward DJ, De Benoist B, Halliday D. The use of stable isotope in the measurement of whole body protein turnover in the human neonate, In Dietze O, Kleinberger G, Wolfram G, eds: Clinical Nutrition and Metabolic Research Basel: Karger, 1986;178–191.

    Google Scholar 

  21. Bier DM, Young VR. Whole body protein turnover. Is leucine a representative tracer? In Adibi SA, Fekl W, Langenbeck U, et al, eds: Branched Chain Amino Acids in Health and Disease. Basel: Karger, 1984;147–161.

    Google Scholar 

  22. Waterlow JC. 15N-end-product methods for the study of whole body protein turnover. Proc Nutr Soc 1981;40:317–320.

    PubMed  CAS  Google Scholar 

  23. Plenert W, Heine W. Normalwerte. Berlin: Volk & Gesundheit, 1984.

    Google Scholar 

  24. Micheli JL, Schutz Y, Pfister R, et al. Protein turnover and early postnatal growth in very low birth weight infants. In Paust H, Park W, Helge H, eds: Use of Stable Isotopes in Clinical Research and Practice. Munich: Zuckschwerdt, 1988;34:70–84.

    Google Scholar 

  25. Moro G, Minoli I, Fulconis F, et al. Low protein formula supports normal growth and protein metabolism in term infants. Pediatr Res 1987;21:433A.

    Google Scholar 

  26. Heine W, Plath C, Richter I, et al. 15N-Tracer investigations into the nitrogen metabolism of preterm infants fed mothers milk and a formula diet. J Pediatr Gastroenterol Nutr 1983;2:606–612.

    PubMed  CAS  Google Scholar 

  27. Plath C, Heine W, Krienke L, et al. 15N-Tracer kinetic studies on the nitrogen metabolism of very small preterm infants on a diet of mothers milk. Hum Nutr Clin Nutr 1985;39/C:399–409.

    Google Scholar 

  28. Heine W, Wutzke KD, Walther F, et al. Eiweißstoffwechsel und Fettbilanzen unter diätetischer Behandlung der akuten Säuglingsenteritis mit einer definierten, standardisierten Oligopeptidnahrung. Monatsschr Kinderheilkd 1987;135:99–102.

    PubMed  CAS  Google Scholar 

  29. Heine W, Tiess M, Wutzke KD. 15N-Tracer investigations of the physiological availability of urea nitrogen in mothers milk. Acta Paediatr Scand 1986;75:439–443.

    PubMed  CAS  Google Scholar 

  30. Fomon SJ, Matthews DE, Bier DM, et al. Bioavailability of dietary urea nitrogen in the infant. J Pediatr 1987;111:221–224.

    PubMed  CAS  Google Scholar 

  31. Fomon SJ, Matthews DE, Bier DM, et al. Bioavailability of dietary urea nitrogen in the breast fed infant. Clin Lab Observ 1988;113:515–517.

    CAS  Google Scholar 

  32. Beaton GF. Nutrition, A Comprehensive Treatise. Orlando: Academic Press, 1964.

    Google Scholar 

  33. Plath C, Heine W, Massute G, et al. Stickstoffanalytische Untersuchungen zur Optimierung der Ernährung unreifer Frühgeborener durch Frauenmilch-supplementierung. Kinderarztl Prax 1987;55:19–30.

    PubMed  CAS  Google Scholar 

  34. Hörnchen H, Neubrand W, Ioosten R, et al. Totale und partielle parenterale Ernährung bei Früh- und Neugeborenen. Stickstoffbilanzen und Aminosäurenchro-matogramme. Infusionstherapie 1979;6:274–282.

    Google Scholar 

  35. Southgate DAT, Barrett M. The intake and excretion of caloric constituents of milk by babies. Br J Nutr 1966;20:363–372.

    PubMed  CAS  Google Scholar 

  36. Fomon SJ. Nitrogen balance studies with normal full-term infants receiving high intakes of protein. Pediatrics 1961;28:347–361.

    PubMed  CAS  Google Scholar 

  37. Heine W, Gassmann B, Plenert W Vergleichende Bilanzuntersuchungen an jungen Säuglingen unter Ernährung mit eiweißreichen und eiweißarmen Fertignahrungen. Padiatr Grenzgeb 1968;7:301–316.

    PubMed  CAS  Google Scholar 

  38. Brock J. Biologische Daten für den Kinderarzt, Vol. 2. Heidelberg: Springer, 1954;48–49.

    Google Scholar 

  39. Widdowson EM. The demands of the fetal and maternal tissues for nutrients and the bearing of these on the needs of the mother to “eat for two”. In Dobbing J, ed: Maternal Nutrition in Pregnancy. Eating for Two? London: Academic Press, 1981;1–7.

    Google Scholar 

  40. Widdowson EM, Southgate DAT, Hey EN. Body composition of the fetus and infant. In Visser HKA, ed: Nutrition and Metabolism of the Fetus and Infant. Boston: Martinus Nijhoff, 1979;169–177.

    Google Scholar 

  41. Pohlandt F, Kupferschmid C. The protein requirement of preterm infants. Klin Pädiatr 1985;197:164–166.

    PubMed  CAS  Google Scholar 

  42. Heird WC. Feeding the premature infant: human milk or an artificial formula? Am J Dis Child 1977;131:468–469.

    PubMed  CAS  Google Scholar 

  43. Guesry PR, Secretin MC, Goyens P. Neue Aspekte der Ernährung von Neugeborenen mit niedrigem Geburtsgewicht. Monatsschr Kinderheilkd 1985;134:508–515.

    Google Scholar 

  44. Pencharz PB, Farri L, Papageorgiu A. The effects of human milk and low protein formulae on the rates of total body protein turnover and urinary 3 methyl histi-dine excretion of preterm infants. Clin Sci 1983;64: 611–621.

    PubMed  CAS  Google Scholar 

  45. Heine W Zum Eiweißbedarf früh- und reifgeborener Säuglinge. Kinderärztl Prax 1983;16:213–219.

    Google Scholar 

  46. Gordon HH, Ganzor AF. On the protein allowances for young infants. J Pediatr 1959;54:503–528.

    PubMed  CAS  Google Scholar 

  47. Committee on Nutrition. American Academy of Pediatrics. Pediatric Nutrition Handbook, 2nd ed. Evano-ton: AAP, 1985.

    Google Scholar 

  48. Committee on Nutrition of the preterm infant, European Society of Pediatric Gastroenterology and Nutrition. Nutrition and feeding of preterm infants. Acta Paediatr Scand [Suppl] 1987;336:1–14.

    Google Scholar 

  49. Prentice A, Ewing G, Roberts SB, et al. The nutritional role of breast milk IgA and lactoferrin. Acta Paediatr Scand 1987;76:592–598.

    PubMed  CAS  Google Scholar 

  50. Forestier F, Daffos F, Rainaut M, et al. Blood chemistry of normal human fetuses at midtrimester of pregnancy. Pediatr Res 1987;21:579–583.

    PubMed  CAS  Google Scholar 

  51. Ehrich JH, Rothganger S. Cholinesterase activity and protein concentration in the serum of premature and newborn infants. Klin Pädiatr 1987;199: 98–102.

    PubMed  CAS  Google Scholar 

  52. Cartlidge PHT, Rutter N. Serum albumin concentrations and oedema in the newborn. Arch Dis Child 1986;61:657–660.

    PubMed  CAS  Google Scholar 

  53. Yudkoff M, Nissim I, McNellis W, et al. Albumin synthesis in premature infants: determination of turnover with 15N-glycine. Pediatr Res 1987;21:49–53.

    PubMed  CAS  Google Scholar 

  54. Misaki M, Kumazawa M, Sugita M, et al. A possible relationship between cord blood transferrin and birth length in infants. Horm Res 1987;25:228–231.

    PubMed  CAS  Google Scholar 

  55. Lucas A, Boyes S, Bloom SR, et al. Metabolic and endocrine responses to a milk feed in six day old term infants: differences between breast and cow’s milk formula feeding. Acta Paediatr Scand 1981;70:195–200.

    PubMed  CAS  Google Scholar 

  56. Reeds PJ, Fuller MF. Nutrient intake and protein turnover. Proc Nutr Soc 1983;42:463–471.

    PubMed  CAS  Google Scholar 

  57. Adibi SA, Fekl W, Langenbeck U, et al. Branched Chain Amino- and Keto Acids in Health and Disease. Basel: Karger, 1984.

    Google Scholar 

  58. Collu R, Ducharme JR, Guyda H. Pediatric Endocrinology. New York: Raven Press, 1981.

    Google Scholar 

  59. Young VR. Protein energy interrelationship in the newborn: a brief consideration of some basis aspects. In Lebenthal E, ed: Textbook of Gastroenterology and Nutrition in Infancy. New York: Raven Press, 1981;257–263.

    Google Scholar 

  60. Roulet M. Der Proteinbedarf des reifen Neugeborenen und Frühgeborenen. Monatsschr Kinderheilkd 1983;131:480–482.

    PubMed  CAS  Google Scholar 

  61. Giacoia GP, Watson S, West K. Rapid turnover transport proteins, plasma albumin and growth in low birth weight infants. J Parenter Enteral Nutr 1984;8:367–370.

    CAS  Google Scholar 

  62. Frazer TE, Kare IE, Hillman LS, et al. Direct measurement of gluconeogenesis from 2.3–13C2 alanine in the human neonate. Am J Physiol 1981;240/E:615–621.

    Google Scholar 

  63. Jackson AA, Shaw ICE, Barber A, et al. Nitrogen metabolism in preterm infants fed human donor breast milk: possible essentiality of glycine. Pediatr Res 1981;15:1454–1461.

    PubMed  CAS  Google Scholar 

  64. Nicholson JF. Rates of protein synthesis in premature infants. Pediatr Res 1970;4:389–404.

    PubMed  CAS  Google Scholar 

  65. Pencharz PB, Steffee WP, Cochran W, et al. Protein metabolism in human neonates: nitrogen balance studies, estimated obligatory losses of nitrogen and whole body turnover of nitrogen. Clin Sci Mol Med 1972;52:435–498.

    Google Scholar 

  66. Pencharz PB, Masson M, Desranges F, et al. Total body-protein turnover in human premature neonates: effects of birth weight, intrauterine nutritional status and diet. Clin Sci 1981;61:207–215.

    PubMed  CAS  Google Scholar 

  67. Nissim I, Yudkoff M, Pereira G, et al. Effects of conceptual age and dietary intake on protein metabolism in premature infants. J Pediatr Gastroenterol Nutr 1983;2:507–516.

    PubMed  CAS  Google Scholar 

  68. Catzeflis C, Schutz Y, Micheli JL, et al. Whole body protein synthesis and energy expenditure in very low birth weight infants. Pediatr Res 1985;19:679–687.

    PubMed  CAS  Google Scholar 

  69. Jackson AA, Golden MHN. Interrelationship of amino acid pools and protein turnover. In Waterlow JC, Stephen JML, eds: Nitrogen Metabolism in Man. London: Applied Science Publishers, 1981;361–373.

    Google Scholar 

  70. Cauderay M, Schutz Y, Micheli JL, et al. Energy nitrogen balances and protein turnover in small and appropriate for gestational age low birth weight infants. Eur J Clin Nutr 1988;42:125–136.

    PubMed  CAS  Google Scholar 

  71. Böhm G, Senger H, Braun W, et al. Metabolie differences between AGA and SGA infants of very low birth weight. I. Relationship to intrauterine growth retardation. Acta Paediatr Scand 1988;77:19–23.

    Google Scholar 

  72. Böhm G, Senger H, Müller DM, et al. Metabolie differences between AGA and SGA very low birth weight infants. II. Relationship to protein intake. Acta Paediatr Scand 1988;77:642–646.

    Google Scholar 

  73. San Pietro A, Rittenberg D. A study of the rate of protein synthesis in humans. II. Measurement of the metabolic pool and the rate of protein synthesis. J Biol Chem 1953;201:457–473.

    PubMed  CAS  Google Scholar 

  74. Matthews DE, Convay JM, Young VR, et al. Glycine nitrogen metabolism in man. Metabolism 1981;30: 886–893.

    PubMed  CAS  Google Scholar 

  75. Fern EB, Garlick PJ, McNurlan MA, et al. The excretion of isotope in urea and ammonia for estimating protein turnover in man with 15N-glycine. Clin Sci 1981;61:217–227.

    PubMed  CAS  Google Scholar 

  76. Kien VL. 15N-Tracers for studying whole body protein metabolism in premature infants. J Pediatr Gastroenterol Nutr 1987;6:321–323.

    PubMed  CAS  Google Scholar 

  77. Wutzke KD, Heine W., Plath C, et al. In preparation.

    Google Scholar 

  78. Beaufrere B, Putet G, Pachiaudi C, et al. Whole body protein turnover measured with 13C leucine and energy expenditure in preterm infants. Pediatr Res 1990;28:147–152.

    PubMed  CAS  Google Scholar 

  79. Stack T, Reeds PJ, Preston T, et al. 15N tracer studies of protein metabolism in low birth weight preterm infants: a comparison of 15N glycine and 15N yeast protein hydrolysate and of human milk and formula fed babies. Pediatr Res 1989;25:167–172.

    PubMed  CAS  Google Scholar 

  80. Plath C, Heine W, Hansen JW, et al. Unpublished data.

    Google Scholar 

  81. Johnson C, Metcoff J. Relation of protein synthesis to plasma and cell amino acids in neonates. Pediatr Res 1986;20:140–146.

    PubMed  CAS  Google Scholar 

  82. Schreier W. Einige quantitative und qualitative Aspekte der künstlichen Ernährung des neugeborenen Säuglings. In Grüttner R, ed: Säuglingsernährung heute. Berlin: Springer, 1982.

    Google Scholar 

  83. Parsons HG, Wood MM, Pencharz PB. Diurnal variation in urine (15N)-urea content, estimates of whole body protein turnover and isotope recycling in healthy meal-fed children with cystic fibrosis. Can J Physiol Pharmacol 1983;61:72–80.

    PubMed  CAS  Google Scholar 

  84. Wernemann J, Von der Decken A, Vinnars E. The diurnal pattern of protein synthesis in human skeletal muscle. Clin Nutr 1985;4:203–205.

    Google Scholar 

  85. Rennie MJ, Edwards RHT, Halliday D, et al. Muscle protein synthesis in man: effects of feeding and fasting. Clin Sci 1982;63:519–523.

    PubMed  CAS  Google Scholar 

  86. Winterer J, Bistrian BR, Bilmazes C, et al. Whole body protein turnover studied with 15N-glycine and muscle breakdown in mildly obese subjects during a protein-sparing diet and a brief total fast. Metabolism 1980;29:575–581.

    PubMed  CAS  Google Scholar 

  87. Garlick PJ, Clugston GA, Waterlow JC. Influence of low energy diets on whole body protein turnover in obese subjects. Am J Physiol Endocrinol Metab 1980;238/E.-235–244.

    Google Scholar 

  88. Ward MWN, Halliday D, Matthews DE, et al. The effect of enteral nutritional support on skeletal muscle protein synthesis and whole body protein turnover in fasted surgical patients. Hum Nutr Clin Nutr 1983;37/C:453–458.

    Google Scholar 

  89. Cheng KN, Pacy PJ, Dworzak F, et al. Influence of fasting on leucine and muscle protein metabolism across human forearm determined using l (1–13C 15N-) leucine as the tracer. Clin Sci 1987;73:241–246.

    PubMed  CAS  Google Scholar 

  90. Schönheyder F, Heilskov NCS, Olesen K. Isotopic studies on the mechanism of negative nitrogen balance produced by immobilization. Scand J Clin Lab Invest 1954;6:178–188.

    PubMed  Google Scholar 

  91. Askanazi I, Elwyn DH, Kinney IM, et al. Muscle and plasma amino acids after injury: the role of inactivity. Ann Surg 1978;188:797–803.

    PubMed  CAS  Google Scholar 

  92. Goldspink DE. The influence of activity on muscle size and protein turnover. J Physiol (Lond) 1977;264: 283–296.

    CAS  Google Scholar 

  93. Jeevanandam M, Long CL, Birkhahn RH, et al. Evaluation of whole body nitrogen kinetics in acute metabolic acidosis. Am J Clin Nutr 1983;37:201–210.

    PubMed  CAS  Google Scholar 

  94. Matthews DE. Protein digestion and absorption. In Kretschmer N, Minkowski A, ed: Nutritional Adaptation of the Intestinal Tract of the Newborn. New York: Raven Press, 1983.

    Google Scholar 

  95. Clarke D, Hymon DE. Gastric secretory maturation of preterm infants. Pediatr Res 1984;18:193A.

    Google Scholar 

  96. Heine W, Fritzsch AK. Immunologische Veränderungen der Kuhmilchproteine bei der Magenverdauung. Kinderärztl Prax 1988;56:375–379.

    PubMed  CAS  Google Scholar 

  97. Zoppi G, Andreotti G, Pajno-Ferrara F, et al. Exocrine pancreas function in premature and full term neonates. Pediatr Res 1973;6:880–886.

    Google Scholar 

  98. Hadorn B. Developmental aspects of intraluminal protein digestion. In Lebenthal E, ed: Textbook of Gastroenterology and Nutrition in Infancy. New York: Raven Press, 1981;365–373.

    Google Scholar 

  99. Auricchio S. Developmental aspects of brush border hydrolysis and absorption of peptides. In Lebenthal E, ed: Textbook of Gastroenterology and Nutrition in Infancy. New York: Raven Press, 1981;375–384.

    Google Scholar 

  100. Sturman IA, Gaull DE, Räihä NCR. Absence of cys-tathionase in human fetal liver: is cystine essential? Science 1970;169:74–76.

    PubMed  CAS  Google Scholar 

  101. Sturman IA, Rassin DK, Gaull DE. Taurine in development: Is it essential in the neonate? Pediatr Res 1976;10:415A.

    Google Scholar 

  102. Jürgens P. Zum Aminosäurebedarf Früh- und Neugeborener sowie junger Säuglinge bei enteraler und parenteraler Ernährung. In Bässler KH, Grünert A, Kleinberger G, eds: Contributions to Infusion Therapy and Clinical Nutrition. Basel, Munich: Karger, 1986;16:14–53.

    Google Scholar 

  103. Fomon SJ, De Maeyer EM, Owen GM. Urinary and fecal excretion of endogenous nitrogen by infants and children. J Nutr 1965;85:235–246.

    PubMed  CAS  Google Scholar 

  104. Bürger U, Wolf H. Untersuchungen über die Verwertung parenteral zugeführter Aminosäuren bei Frühgeborenen und hypotrophen Neugeborenen. III. Zusammenstellung einer Aminosäurenlösung nach pharmakokinetischen Gesichtspunkten. Eur J Pediatr 1976;122:169–175.

    PubMed  Google Scholar 

  105. Lindblad BS, Alfven G, Ginsburg EE. The intravenous and peroral requirements of amino acids in early infancy. In Visser HKA, ed: Nutrition and Metabolism of the Fetus and Infant. Boston: Martinus Nijhoff, 1979;325–339.

    Google Scholar 

  106. Lemons JA, Adcock EW III, Jones UD Jr, et al. Umbilical uptake of amino acids in the unstressed fetal lamb. J Clin Invest 1976;58:1428–1434.

    PubMed  CAS  Google Scholar 

  107. Gresham EL, James EJ, Raye IR, et al. Production and excretion of urea by the fetal lamb. Pediatrics 1972;50:372–379.

    PubMed  CAS  Google Scholar 

  108. Pohlandt F. Studies on the requirement of amino acids in newborn infants receiving parenteral nutrition. In Visser HKA, ed: Nutrition and Metabolism of the Fetus and Infant. Boston: Martinus Nijhoff, 1979;341–364.

    Google Scholar 

  109. Duffy B, Pencharz PB. The effects of surgery on the nitrogen metabolism of parenterally fed human neonates. Pediatr Res 1986;20:32–35.

    PubMed  CAS  Google Scholar 

  110. Duffy B, Gunn T, Colinge J, et al. The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed low birth weight (1600 g) infants. Pediatr Res 1981;15:1040–1044.

    PubMed  CAS  Google Scholar 

  111. Zlotkin SH. Intravenous nitrogen intake requirements in full term newborns undergoing surgery. Pediatrics 1984;73:493–496.

    PubMed  CAS  Google Scholar 

  112. Heird WC, Winters RW Total parenteral nutrition: the state of the art. J Pediatr 1975;86:2–16.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Heine, W. (1991). Neonatal Protein Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics