Skip to main content

Water Metabolism in the Fetal-Placental Unit

  • Chapter
Principles of Perinatal-Neonatal Metabolism

Abstract

Understanding water metabolism in the fetus is dependent on several major important considerations. The first is that although the fetus probably regulates the volume and composition of the fluid that surrounds it in utero, the pregnant woman, through the placenta, is the major regulator of fetal fluid and electrolyte balance.1 This point has important implications for the fetus and for the neonate. Any alteration in maternal fluid or electrolyte balance secondary to administration of fluids prior to delivery is reflected in the neonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wintour EM. Maternal influences on fetal fluid and electrolyte balance. In Brace RA, Robillard JE, Ross MG, eds: Fetal and Neonatal Body Fluids: The Scientific Basis of Clinical Practice. Ithaca, NY: Perinatology Press, 1989;272–292.

    Google Scholar 

  2. Brace RA. Amniotic fluid volume and its relationship to fetal fluid balance: review of experimental data. Semin Perinatol 1986;10:103–112.

    PubMed  CAS  Google Scholar 

  3. Engle WD. Development of fetal and neonatal renal function. Semin Perinatol 1986;10:113–124.

    PubMed  CAS  Google Scholar 

  4. Daniel SS, Bowe ET, Lallemand R, et al. Renal responses to acid loading in the developing lamb fetus, intact in utero. J Perinatol Med 1975;3:34–43.

    Article  CAS  Google Scholar 

  5. Kesby GJ, Lumbers ER. The effects of metabolic acidosis on renal function of fetal sheep. J Physiol (Lond) 1988;396:65–74.

    CAS  Google Scholar 

  6. Gray MJ, Plentl AA. The variations of the sodium space and the total exchangeable sodium during pregnancy. J Clin Invest 1954;33:347–353.

    Article  PubMed  CAS  Google Scholar 

  7. Davey DA, O’Sullivan WJ, McClure Browne JC. Total exchangeable sodium in normal pregnancy and in preeclampsia. Lancet 1961;1:519–523.

    Article  PubMed  CAS  Google Scholar 

  8. Metcalfe J, Stock MK, Barron DH. Maternal physiology during gestation. In Knobil E, Neill J, et al, eds: The Physiology of Reproduction. New York: Raven Press, 1988;2154–2176.

    Google Scholar 

  9. Cheek DB, Petrucco OM, Gillespie A, et al. Muscle cell growth and the distribution of water and electrolyte in human pregnancy. Early Hum Dev 1985;11: 293–305.

    Article  PubMed  CAS  Google Scholar 

  10. Churchill SE, Bengele HH, Alexander EA. Sodium balance during pregnancy in the rat. Am J Physiol 1980;239:R143–R148.

    CAS  Google Scholar 

  11. Atherton JC, Dark JM, Garland HO, et al. Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat. J Physiol (Lond) 1982;330:81–93.

    CAS  Google Scholar 

  12. Alexander EA, Churchill S, Bengele HH. Renal hemodynamics and volume homeostasis during pregnancy in the rat. Kidney Int. 1980;18:173–178.

    Article  PubMed  CAS  Google Scholar 

  13. Wintour EM, Blair-West JR, Brown EH, et al. The effect of pregnancy on mineralo- and gluco-corticoid secretion in the sheep. Clin Exp Pharmacol Physiol 1976;3:331–342.

    Article  PubMed  CAS  Google Scholar 

  14. Denton DA. Salt appetite during reproduction, including discussion of learned appetites and aversions, and pica. In Denton DA, ed: The Hunger for Salt. New York: Springer-Verlag, 1982;417–450.

    Google Scholar 

  15. Coghlan JP, Scoggins BA, Wintour EM. Aldosterone. In Gray CH, James VHT, eds: Hormones in Blood, 3rd ed. Vol. 3. London: Academic Press, 1979;494–583.

    Google Scholar 

  16. Longo LD. Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrine control. Am J Physiol 1983;245:R720–R729.

    PubMed  CAS  Google Scholar 

  17. Wintour EM, Knobil E, Scoggins BA, et al. The renin-aldosterone systems in the pregnant rhesus monkey (Macaca mulatta). Clin Exp Pharmacol Physiol 1974;1:167–170.

    Article  PubMed  CAS  Google Scholar 

  18. Hodgen GD, Dufau ML, Catt KJ, et al. Estrogens, progesterone and chorionic gonadotropin in pregnant rhesus monkeys. Endocrinology 1972;91:896–900.

    Article  PubMed  CAS  Google Scholar 

  19. Challis JRG, Patrick JE. Fetal and maternal estrogen concentrations throughout pregnancy in the sheep. Can J Physiol Pharmacol 1981;59:970–978.

    Article  PubMed  CAS  Google Scholar 

  20. De Bold AJ. On the shoulders of giants: the discovery of atrial natriuretic factor. Can J Physiol Pharmacol 1987;67:2007–2012.

    Article  Google Scholar 

  21. Lang RE, Unger T, Ganten D. Atrial natriuretic peptide: a new factor in blood pressure control. J Hyper-tens 1987;5:255–271.

    Article  CAS  Google Scholar 

  22. Cusson JR, Gutkowska J, Rey E, et al. Plasma concentration of atrial natriuretic factor in normal pregnancy. N Engl J Med 1985;313:1230–1231.

    PubMed  CAS  Google Scholar 

  23. Otsuki Y, Okamoto E, Iwata I, et al. Changes in concentration of human atrial natriuretic peptide in normal pregnancy and toxaemia. J Endocrinol 1987;114: 325–328.

    Article  PubMed  CAS  Google Scholar 

  24. Di Lieto A, Campanile M, Paladini D, et al. Atrial natriuretic peptide and the renin angiotensin aldosterone system in normotensive and hypertensive pregnancy. Clin Exp Hypertens 1988;B7:89–97.

    Google Scholar 

  25. Olsson K, Karlberg BE, Eriksson L. Atrial natriuretic peptide (ANP) in pregnant and lactating goats. Acta Endocrinol (Copenh) 1989;120:519–525.

    CAS  Google Scholar 

  26. Kamphuis CA. The physiological action of atrial natriuretic factor (ANF) in pregnant sheep. BSc honors thesis, University of Melbourne, 1988.

    Google Scholar 

  27. Nadel AS, Ballerman BJ, Anderson S, et al. Interrelationships among atrial peptides, renin, and blood volume in pregnant rats. Am J Physiol 1988;254: R793–R800.

    PubMed  CAS  Google Scholar 

  28. Kamphuis CA, Coghlan JP, McDougall JG, et al. Physiological action of atrial natriuretic factor (ANF) in pregnant sheep. In: Proceedings 27th Meeting, Australian Society for Medical Research 1988;56A.

    Google Scholar 

  29. Parkes DG, Coghlan JP, Cooper EJ, et al. Hemodynamic and renal effects of human atrial natriuretic peptide (99–126) in volume expanded sheep. Clin Exp Hypertens 1988;A10:1107–1126.

    CAS  Google Scholar 

  30. Kristensen CG, Nakagawa Y, Coe FL, et al. Effect of atrial natriuretic factor in rat pregnancy. Am J Physiol 1986;250:R589–R594.

    PubMed  CAS  Google Scholar 

  31. Johnson WL, McGaughey HS, Thornton WN. Serum sodium and total solute concentrations in normal and toxic pregnancy. Surg Forum 1961;12:422–424.

    PubMed  CAS  Google Scholar 

  32. Hytten FE, Thomson AM, Taggart N. Total body water in normal pregnancy. J Obstet Gynaecol Br Commonw 1966;73:553–561.

    Article  PubMed  CAS  Google Scholar 

  33. Hytten FE, Thomson AM. Body water in preeclampsia. J Obstet Gynaecol Br Commonw 1966;73: 714–716.

    Article  PubMed  CAS  Google Scholar 

  34. Robertson EG. Oedema in normal pregnancy. J Reprod Fertil 1969;suppl 9:27–36.

    Google Scholar 

  35. MacDonald HN, Good W. Changes in plasma sodium, potassium and chloride concentrations in pregnancy and the puerperium with plasma and serum osmolality. J Obstet Gynaecol Br Commonw 1971;78:798–803.

    Article  PubMed  CAS  Google Scholar 

  36. MacDonald HN, Good W. The effect of parity on plasma sodium potassium, chloride and osmolality levels during pregnancy. J Obstet Gynaecol Br Commonw 1972;79:441–449.

    Article  PubMed  CAS  Google Scholar 

  37. Davison JM, Vallhotton MB, Lindheimer MD. Plasma osmolality and urinary concentration and dilution during and after pregnancy: evidence that lateral recumbency inhibits maximal urinary concentration ability. Br J Obstet Gynaecol 1981;88:472–479.

    Article  PubMed  CAS  Google Scholar 

  38. Davison JM, Gilmore EA, Durr J, et al. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am J Physiol 1984;246: F105–F109.

    PubMed  CAS  Google Scholar 

  39. Pedersen EB, Johannesen P, Rasmussen AB, et al. The osmoregulatory system and the renin-angiotensin-aldosterone system in pre-eclampsia and normotensive pregnancy. Scand J Clin Lab Invest 1985;45: 627–633.

    Article  PubMed  CAS  Google Scholar 

  40. Vokes TJ, Weiss NM, Schreiber J, et al. Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am J Physiol 1988;254:R641–R647.

    PubMed  CAS  Google Scholar 

  41. Davison JM, Shiells EA, Philips PR, et al. Serial evaluation of vasopressin release and thirst in human pregnancy: role of human chorionic gonadotrophin in the osmoregulatory changes of gestation. J Clin Invest 1988;81:798–806.

    Article  PubMed  CAS  Google Scholar 

  42. Davison JM, Shiells EA, Philips PR, et al. Suppression of AVP release by drinking despite hypertonicity during and after gestation. Am J Physiol 1988;254: F588–F592.

    PubMed  CAS  Google Scholar 

  43. Davison JM, Shiells EA, Barron WM, et al. Changes in the metabolic clearance of vasopressin and in plasma vasopressinase throughout human pregnancy. J Clin Invest 1989;83:1313–1318.

    Article  PubMed  CAS  Google Scholar 

  44. Durr JA, Stamoutsos B, Lindheimer MD. Osmoregulation during pregnancy in the rat: evidence for resetting of the threshold for vasopressin secretion during gestation. J Clin Invest 1981;68:337–346.

    Article  PubMed  CAS  Google Scholar 

  45. Barron WM, Stamoutsos BA, Lindheimer MD. Role of volume in the regulation of vasopressin secretion during pregnancy in the rat. J Clin Invest 1984;73:923–932.

    Article  PubMed  CAS  Google Scholar 

  46. Barron WM, Durr J, Stamoutsos BA, et al. Osmoregulation and vasopressin secretion during pregnancy in Brattleboro rats. Am J Physiol 1985;248:R29–R37.

    PubMed  CAS  Google Scholar 

  47. Lindheimer MD, Barron WM, Durr J, et al. Water homeostasis and vasopressin release during rodent and human gestation. Am J Kidney Dis 1987;9:270–275.

    PubMed  CAS  Google Scholar 

  48. Bell RJ, Laurence BM, Meehand PJ, et al. Regulation and function of arginine vasopressin in pregnant sheep. Am J Physiol 1986;250:F777–F780.

    PubMed  CAS  Google Scholar 

  49. Olsson K, Benlamlih S, Dahlborn K, et al. A serial study of fluid balance during pregnancy, lactation and anestrus in goats. Acta Physiol Scand 1982;115:39–45.

    Article  PubMed  CAS  Google Scholar 

  50. Olsson K. Pregnancy—a challenge to water balance. News Physiol Sci 1986;1:131–134.

    Google Scholar 

  51. Forbes J. The water intake of ewes. Br JNutr 1986;22: 33–43.

    Article  Google Scholar 

  52. Olsson K, Dahlborn K. Effects of a synthetic vasopressin analogue (desmopressin) in pregnant, lactating and anoestral goats. Acta Physiol Scand 1985;124: 597–601.

    Article  PubMed  CAS  Google Scholar 

  53. Hoversland AS, Parer JT, Metcalfe J. Hemodynamic adjustments in the pygmy goat during pregnancy and early postpartum. Biol Reprod 1974;10:578–588.

    Article  PubMed  CAS  Google Scholar 

  54. Olsson K, Anden N-E, Johansson K, et al. Effects of acute haemorrhagic hypotension during pregnancy and lactation in conscious goats. Acta Physiol Scand 1987;129:479–487.

    Article  PubMed  CAS  Google Scholar 

  55. Bell RJ, Congiu M, Hardy KJ, et al. Gestation dependent aspects of the response of the ovine fetus to the osmotic stress induced by maternal water deprivation. Q J Exp Physiol 1984;69:187–195.

    PubMed  CAS  Google Scholar 

  56. Olsson K, Benlamlih S, Dahlborn R, et al. Effects of water deprivation and hyperhydration in pregnant and lactating goats. Acta Physiol Scand 1982;115:361–367.

    Article  PubMed  CAS  Google Scholar 

  57. Goodlin RC, Quaite MA, Dirksen JW. The significance, diagnosis, and treatment of maternal hypovolemia as associated with fetal maternal illness. Semin Perinatol 1981;5:163–174.

    PubMed  CAS  Google Scholar 

  58. Gallery EDM. Pregnancy-associated hypertension: interrelationships of volume and blood pressure. Clin Exp Hypertens 1982;B1:39–47.

    Google Scholar 

  59. Koller O. The clinical significance of hemodilution during pregnancy. Obstet Gynecol Surv 1982;37:649–652.

    Article  PubMed  CAS  Google Scholar 

  60. Gallery EDM, Brown MA. Volume Romeostasis in normal and hypertensive pregnancy. Baillieres Clin Obstet Gynecol 1987;1:835–851.

    Article  CAS  Google Scholar 

  61. Gallery EDM, Hunyor SN, Gyory AZ. Plasma volume contraction: a significant factor in both pregnancy-associated hypertension (pre-eclampsia) and chronic hypertension in pregnancy. Q J Med 1979;48:593–602.

    PubMed  CAS  Google Scholar 

  62. Sibai BM, Abdella TN, Anderson GD, et al. Plasma volume determinations in pregnancies complicated by chronic hypertension and intrauterine fetal demise. Obstet Gynecol 1982;60:174–178.

    PubMed  CAS  Google Scholar 

  63. Goodlin RC, Anderson JC, Gallagher TF. Relationship between amniotic fluid volume and maternal plasma volume expansion. Am J Obstet Gynecol 1983;146: 505–511.

    PubMed  CAS  Google Scholar 

  64. Battaglia F, Prystowsky H, Smisson C, et al. The effect of administration of fluids intravenously to mothers upon the concentrations of water and electrolytes in plasma of human fetuses. Pediatrics 1960;25:2–10.

    PubMed  CAS  Google Scholar 

  65. Bruns PD, Linder RD, Drose VE, et al. The placental transfer of water from fetus to mother following the intravenous infusion of hypertonic mannitol to the maternal rabbit. Am J Obstet Gynecol 1963;86:160–167.

    Google Scholar 

  66. Bruns PD, Hellegers AE, Seeds AE, et al. Effects of osmotic gradients across the primate placenta upon fetal and placental water gradients. Pediatrics 1964;34:407–411.

    PubMed  CAS  Google Scholar 

  67. Armentrout T, Katz S, Thornburg KL, et al. Osmotic flow through the placental barrier of chronically prepared sheep. Am J Physiol 1977;233:H466–H474.

    PubMed  CAS  Google Scholar 

  68. Lumbers ET, Smith FG, Stevens AD. Measurement of net transplacental transfer of fluid to the fetal sheep. J Physiol (Lond) 1985;364:289–299.

    CAS  Google Scholar 

  69. Dancis J, Worth M, Scheidau PB. Effect of electrolyte disturbances in the pregnant rabbit on the fetus. Am J Physiol 1957;188:535–537.

    PubMed  CAS  Google Scholar 

  70. Towstoless MK, Congiu M, Coghlan JP, et al. Placental and renal control of plasma osmolality in chronically cannulated ovine fetus. Am J Physiol 1987;253: R389–R395.

    PubMed  CAS  Google Scholar 

  71. Burnell RH, Dahlenburg GW. Iatrogenic hyponatraemia in mother and infant. Med J Aust 1979;2:254.

    PubMed  CAS  Google Scholar 

  72. Evans SE, Crawford JS, Stevens ID, et al. Fluid therapy for induced labour under epidural anaesthesia: biochemical consequences for mother and infant. Br J Obstet Gynaecol 1986;93:329–333.

    PubMed  CAS  Google Scholar 

  73. Alstatt LB. Transplacental hyponatremia in the newborn infant. J Pediatr 1965;66:985–987.

    Article  Google Scholar 

  74. Burt RL, Oliver KL, Whitener DL. Water intoxication complicating elective induction of labour at term. Obstet Gynecol 1969;34:212–220.

    PubMed  CAS  Google Scholar 

  75. Schwartz RH, Jones RWA. Transplacental hyponatremia due to oxytocin. Br Med J 1978;1:152–153.

    Article  PubMed  CAS  Google Scholar 

  76. Bieniarz J, Burd L, Motew M, et al. Inhibition of uterine contractility in labour. Am J Obstet Gynecol 1971;111:874–885.

    PubMed  CAS  Google Scholar 

  77. Benedetti TJ. Maternal complications of parenteral β-sympathomimetic therapy for premature labour. Am J Obstet Gynecol 1983;145:1–6.

    PubMed  CAS  Google Scholar 

  78. Abdul-Karim R, Assali NS. Renal function in human pregnancy. V. Effects of oxytocin on renal haemodynamics and water and electrolyte excretion. J Lab Clin Med 1961;57:522–532.

    PubMed  CAS  Google Scholar 

  79. Liggins GC. Acute water retention with continuous slow infusion of oxytocin. J Obstet Gynaecol Br Commonw 1962;69:277–281.

    Article  CAS  Google Scholar 

  80. Self J. Water intoxication induced by oxytocin administration. Am J Med Sci 1966;252:573–574.

    Article  PubMed  CAS  Google Scholar 

  81. Silva P, Allan MS. Water intoxication due to high doses of synthetic oxytocin. Obstet Gynecol 1966;27:517–524.

    Article  PubMed  CAS  Google Scholar 

  82. Pedlow PRB. Syntocinon induced convulsion. J Obstet Gynaecol Br Commonw 1970;77:1113–1114.

    Article  PubMed  CAS  Google Scholar 

  83. Leventhal JM, Reid DE. Oxytocin-induced water intoxication with grand mal convulsion. Am J Obstet Gynecol 1968;102:310–311.

    PubMed  CAS  Google Scholar 

  84. Lauerson NH, Birnbaum SJ. Water intoxication associated with oxytocin administration during saline-induced abortion. Am J Obstet Gynecol 1975;121:2–6.

    Google Scholar 

  85. Morgan DB, Kerwan NA, Hancock KW, et al. Water intoxication and oxytocin infusion. Br J Obstet Gynaecol 1977;84:6–12.

    Article  PubMed  CAS  Google Scholar 

  86. Gupta DR, Cohen NH. Oxytocin, “salting out,” and water intoxication. JAMA 1972;220:681–683.

    Article  PubMed  CAS  Google Scholar 

  87. Ware S. Transplacental hyponatremia due to oxytocin. (Letter) Br Med J 1978;1:362.

    Google Scholar 

  88. Lilien AA. Oxytocin induced water intoxication: a report of a maternal death. Obstet Gynecol 1968;32: 171–173.

    PubMed  CAS  Google Scholar 

  89. Schifrin BS, Spellacy WN, Little WA. Maternal death associated with excessive ingestion of a chlorothiazide diuretic. Obstet Gynecol 1969;34:215–220.

    PubMed  CAS  Google Scholar 

  90. Storch AS. Acute water retention associated with continuous slow infusion of oxytocin. Obstet Gynecol 1971;37:109–111.

    PubMed  CAS  Google Scholar 

  91. Vere MF, Sellers SM. Transplacental hyponatremia due to oxytocin. (Letter) Br Med J 1978;1:362.

    Google Scholar 

  92. Tarnow-Mordi WO, Shaw JCL, Lui D, et al. Iatrogenic hypernatraemia of the newborn due to maternal fluid overload: a prospective study. Br Med J 1981;283: 639–642.

    Article  CAS  Google Scholar 

  93. Kenepp NB, Shelley WC, Gabbe SG, et al. Neonatal hazards of maternal hydration with 5% dextrose before caesarian section. Lancet 1982;1:1150–1152.

    Article  PubMed  CAS  Google Scholar 

  94. Rojas J, Mohan P, Davidson KK. Increased extracellular water volume associated with hyponatremia at birth in premature infants. J Pediatr 1984;105:158–161.

    Article  PubMed  CAS  Google Scholar 

  95. Mohan P, Rojas J, Davidson KK, et al. Pulmonary air leak associated with hyponatremia in premature infants. J Pediatr 1984;105:153–157.

    Article  PubMed  CAS  Google Scholar 

  96. Campbell S, Wladimiroff JW, Dewhurst CJ. The antenatal measurement of fetal urine production. J Obstet Gynaecol Br Commonw 1973;80:680–686.

    Article  PubMed  CAS  Google Scholar 

  97. Kurjak A, Kirkinen P, Latin V, et al. Ultrasonic assessment of fetal kidney function in normal and complicated pregnancies. Am J Obstet Gynecol 1981;141: 266–270.

    PubMed  CAS  Google Scholar 

  98. Potter EL, Thierstein ST. Glomerular development in the kidney as an index of fetal maturity. J Pediatr 1943;22:695–706.

    Article  Google Scholar 

  99. Robillard JE, Weismann DN, Herin P. Ontogeny of single glomerular perfusion rate in fetal and newborn lambs. Pediatr Res 1981;15:1248–1255.

    PubMed  CAS  Google Scholar 

  100. Aperia A, Larsson L. Correlation between fluid reab-sorption and proximal tubule ultrastructure during development of the rat kidney. Acta Physiol Scand 1979;105:11–22.

    Article  PubMed  CAS  Google Scholar 

  101. Robillard JE, Nakamura KT, Matherne GP, et al. Renal hemodynamics and functional adjustments to postnatal life. Semin Perinatol 1988;12:143–150.

    PubMed  CAS  Google Scholar 

  102. McCance RA, Widdowson EM. Renal function before birth. Proc R Soc 1953;141:488–497.

    Article  CAS  Google Scholar 

  103. Abramovich DR. Fetal factors influencing the volume and composition of liquor amnii. J Obstet Gynaecol Br Commonw 1970;77:865–877.

    Article  PubMed  CAS  Google Scholar 

  104. Davies J. The blood supply of the mesonephros of the sheep. Proc Zool Soc Lond 1950;120:95–112.

    Google Scholar 

  105. Alexander DP, Nixon DA, Widdas WF, et al. Renal function in the sheep foetus. J Physiol (Lond) 1958;140:14–22.

    CAS  Google Scholar 

  106. Wintour EM, Congui M, Hardy KJ, et al. Regulation of urine osmolality in fetal sheep. Q J Exp Physiol 1982;67:427–435.

    PubMed  CAS  Google Scholar 

  107. Wintour EM, Bell RJ, Congui M, et al. The value of urine osmolality as an index of stress in the ovine fetus. J Dev Physiol 1985;7:347–354.

    PubMed  CAS  Google Scholar 

  108. Stanier MW. Development of intra-renal solute gradients in foetal and post-natal life. Pfluegers Arch 1972;336:263–270.

    Article  CAS  Google Scholar 

  109. Hill KJ, Lumbers ER. Renal function in fetal and adult sheep. J Dev Physiol 1988;10:85–96.

    PubMed  CAS  Google Scholar 

  110. Ross B, Cowett RM, Oh W. Renal functions of low birth weight infants during the first two months of life. Pediatr Res 1977;11:1162–1164.

    PubMed  CAS  Google Scholar 

  111. Engelke SC, Shah BL, Vasan V, et al. Sodium balance in very low birth-weight infants. J Pediatr 1978;93: 837–841.

    Article  PubMed  CAS  Google Scholar 

  112. Aperia A, Broberger O, Herin P, et al. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 1979;68:813–817.

    Article  PubMed  CAS  Google Scholar 

  113. Sulyok E, Varga F, Gyory E, et al. Postnatal development of renal sodium handling in premature infants. J Pediatr 1979;95:787–792.

    Article  PubMed  CAS  Google Scholar 

  114. Al-Dahhan J, Haycock GB, Chantier C, et al. Sodium homeostasis in term and pre-term neonates. Arch Dis Child 1983;58:335–342.

    Article  PubMed  CAS  Google Scholar 

  115. Lumbers ER, Hill KJ, Bennett VJ. Proximal and distal tubular activity in chronically catheterized fetal sheep compared with the adult. Can J Physiol Pharmacol 1988;66:697–702.

    Article  PubMed  CAS  Google Scholar 

  116. Rodriguez-Soriano J, Vallo A, Oliveros R, et al. Renal handling of sodium in premature and full-term neonates: a study using clearance methods during water diuresis. Pediatr Res 1983;17:1013–1016.

    Article  PubMed  CAS  Google Scholar 

  117. Kleinman LI. Renal tubule sodium reabsorption during saline loading and distal tubule blockade in newborn dogs. Am J Physiol 1975;228:1403–1408.

    PubMed  CAS  Google Scholar 

  118. Aperia A, Elinder G. Distal tubule sodium reabsorption in the developing rat kidney. Am J Physiol 1981;240:F487–F491.

    PubMed  CAS  Google Scholar 

  119. Morinaga S, Tsumuraya M, Nakajima T, et al. Immunohistochemical and immunocytochemical localization of atrial natriuretic polypeptide in human adult and fetal hearts. Acta Histochem Cytochem 1985;18:605–613.

    Article  CAS  Google Scholar 

  120. Toshimori H, Toshimori K, Oura C, et al. Immunohistochemical study of atrial natriuretic polypeptides in the embryonic, fetal, and neonatal rat heart. Cell Tissue Res 1987;248:627–633.

    Article  PubMed  CAS  Google Scholar 

  121. Bloch KD, Seidman JG, Naftilan JD, et al. Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways. Cell 1986;47:695–702.

    Article  PubMed  CAS  Google Scholar 

  122. Kikuchi K, Nakao K, Hayashi K, et al. Ontogeny of atrial natriuretic polypeptide in the human heart. Acta Endocrinol (Copenh) 1987;115:211–217.

    CAS  Google Scholar 

  123. Scott JN, Jennes L. Distribution of atrial natriuretic factor in fetal rat atria and ventricles. Cell Tissue Res 1987;248:479–481.

    Article  PubMed  CAS  Google Scholar 

  124. Wei Y, Rodi CP, Day ML, et al. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest 1987;79:1325–1329.

    Article  PubMed  CAS  Google Scholar 

  125. Yamaji T, Hirai N, Ishibashi M, et al. Atrial natriuretic peptide in umbilical cord blood: evidence for a circulating hormone in human fetus. J Clin Endocrinol Metab 1986;63:1414–1417.

    Article  PubMed  CAS  Google Scholar 

  126. Cheung CY, Gibbs DM, Brace RA. Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol 1987;252:E279–E282.

    PubMed  CAS  Google Scholar 

  127. Ross MG, Ervin MG, Lam RE, et al. Plasma atrial natriuretic peptide response to volume expansion in the ovine fetus. Am J Obstet Gynecol 1987;157:1291–1297.

    Google Scholar 

  128. Castro LC, Lam RW, Ross MG, et al. Atrial natriuretic peptide in the sheep. J Dev Physiol 1988;10:235–246.

    PubMed  CAS  Google Scholar 

  129. Ervin MG, Ross MG, Castro R, et al. Ovine fetal and adult atrial natriuretic factor metabolism. Am J Physiol 1988;254:R40–R46.

    PubMed  CAS  Google Scholar 

  130. Robillard JE, Nakamura KT, Varille VA, et al. Ontogeny of the renal response to natriuretic peptide in sheep. Am J Physiol 1988;254:F634–F641.

    PubMed  CAS  Google Scholar 

  131. Robillard JE, Weiner C. Atrial natriuretic factor in the human fetus: effect of volume expansion. J Pediatr 1988;113:552–555.

    Article  PubMed  CAS  Google Scholar 

  132. Ross MG, Ervin MG, Lam RW, et al. Fetal atrial natriuretic factor and arginine vasopressin responses to hyperosmolality and hypervolemia. Pediatr Res 1988;24:318–321.

    PubMed  CAS  Google Scholar 

  133. Brown J, Corr L, Mechanisms of human α-atrial natriuretic peptide in man. J Physiol (Lond) 1987;387:31–46.

    CAS  Google Scholar 

  134. Parkes DG, Coghlan JP, McDougall JG, et al. Hemodynamic effects of atrial natriuretic peptide in conscious sheep. Clin Exp Hypertens 1987;A9:2143–2155.

    Article  CAS  Google Scholar 

  135. Lappe RW, Smits JFM, Todt JA, et al. Failure of atri-opeptin II to cause arterial vasodilation in the conscious rat. Circ Res 1985;56:606–612.

    PubMed  CAS  Google Scholar 

  136. Kleinert HD, Volpe M, Odell G, et al. Cardiovascular effects of atrial natriuretic factor in anesthetized and conscious dogs. Hypertension 1986;8:312–316.

    PubMed  CAS  Google Scholar 

  137. Parkes DG, Coghlan JP, McDougall JG, et al. Longterm hemodynamic actions of atrial natriuretic factor (99–126) in conscious sheep. Am J Physiol 1988;254: H811–H815.

    PubMed  CAS  Google Scholar 

  138. Shine P, McDougall JG, Towstoless MK, et al. Action of atrial natriuretic peptide in the immature ovine kidney. Pediatr Res 1987;22:11–15.

    Article  PubMed  CAS  Google Scholar 

  139. Robillard JE, Nakumara KT, Varille VA, et al. Plasma and urinary clearance rates of atrial natriuretic factor during ontogeny in sheep. J Dev Physiol 1988;10: 335–346.

    PubMed  CAS  Google Scholar 

  140. Brace RA, Cheung CY. Cardiovascular and fluid responses to atrial natriuretic factor in sheep fetus. Am J Physiol 1987;253:R561–R567.

    PubMed  CAS  Google Scholar 

  141. Yates NA, McDougall JG, Coghlan JP, et al. Renal effects of atrial natriuretic factor (99–126) in conscious sodium-replete sheep. Clin Exp Pharmacol Physiol 1988;15:551–562.

    Article  PubMed  CAS  Google Scholar 

  142. Amadieu M, Giry J, Barlet JP. Diuretic, natriuretic and hypotensive effects of synthetic atrial natriuretic factor in conscious newborn calves. J Dev Physiol 1988;10:37–45.

    PubMed  CAS  Google Scholar 

  143. Biollaz J, Bidiville J, Diezi J, et al. Site of action of a synthetic atrial natriuretic peptide evaluated in humans. Kidney Int 1987;32:537–546.

    Article  PubMed  CAS  Google Scholar 

  144. Harris PJ, Skinner SL, Zhuo J. The effects of atrial natriuretic peptide and glucagon on proximal glom-erulotubular balance in anaesthetized rats. J Physiol (Lond) 1988;402:29–42.

    CAS  Google Scholar 

  145. Tulassay T, Rascher W, Seyberth HW, et al. Role of atrial natriuretic peptide in sodium homeostasis in premature infants. J Pediatr 1986;109:1023–1027.

    Article  PubMed  CAS  Google Scholar 

  146. Rascher W, Bald M, Kreis J, et al. Atrial natriuretic peptide in infants and children. Horm Res 1987;28: 58–63.

    Article  PubMed  CAS  Google Scholar 

  147. Shaffer SG, Geer PG, Goetz KL. Elevated atrial natriuretic factor in neonates with respiratory distress syndrome. J Pediatr 1986;109:1028–1033.

    Article  PubMed  CAS  Google Scholar 

  148. Wintour EM, Hammond VE, Levidiotis M, et al. Development of the hypothalamic pituitary adrenal axis in the fetus. In Mantero F, Takeda R, Scoggins BA, et al., eds: Serono Symposium: The Adrenal and Hypertension—from Cloning to Clinic. New York: Raven Press, 1989;57:1–13.

    Google Scholar 

  149. Wood CE, Cheung CY, Brace RA. Fetal heart rate, arterial pressure, and blood volume responses to Cortisol infusion. Am J Physiol 1987;253:R904–R909.

    PubMed  CAS  Google Scholar 

  150. Hill KJ, Lumbers ER, Elbourne I. The actions of Cortisol on fetal renal function. J Dev Physiol 1988;10:85–96.

    PubMed  CAS  Google Scholar 

  151. Ray N, De W, Turner CS, et al. Ovine fetal adrenal gland and cardiovascular function. Am J Physiol 1988;254:R706–R710.

    PubMed  CAS  Google Scholar 

  152. Stonestreet BS, Hansen NB, Laptook AR, et al. Glucocorticoid accelerates renal functional maturation in fetal lambs. Early Hum Dev 1983;8:331–341.

    Article  PubMed  CAS  Google Scholar 

  153. Aperia A, Larsson L, Zetterstrom R. Hormonal induction of Na-K-ATPase in developing proximal tubular cells. Am J Physiol 1981;241:F356–F360.

    PubMed  CAS  Google Scholar 

  154. Rane S, Aperia A. Ontogeny of Na-K-ATPase activity in thick ascending limb and of concentrating ability. Am J Physiol 1985;249:F723–F728.

    PubMed  CAS  Google Scholar 

  155. Ellis D, Sothi TD, Curthoys NP, et al. Regulation of glucocorticoid receptors and Na-K-ATPase activity by hydrocortisone in proximal tubular epithelial cells. In Vitro Cell Dev Biol 1988;24:811–816.

    Article  PubMed  CAS  Google Scholar 

  156. Aperia A, Haldosen L-A, Larsson L, et al. Ontogeny of triamcinolone-acetonide binding sites in outer cortical tissue from rat kidneys. Am J Physiol 1985;249:F891–F897.

    PubMed  CAS  Google Scholar 

  157. Wintour EM, Coghlan JP, Towstoless M. Cortisol is natriuretic in the immature ovine fetus. J Endocrinol 1985;106:R13–R15.

    Article  PubMed  CAS  Google Scholar 

  158. Towstoless MK, McDougall JG, Wintour EM. Gestational changes in renal responsiveness to Cortisol in the ovine fetus. Pediatr Res 1989;26:6–10.

    Article  PubMed  CAS  Google Scholar 

  159. Garcia R, Debinski W, Gutkowska J, et al. Gluco- and mineralocorticoids may regulate the natriuretic effect and the synthesis and release of atrial natriuretic factor by the rat atria in vivo. Biochem Biophys Res Commun 1985;131:806–814.

    Article  PubMed  CAS  Google Scholar 

  160. Gardner DG, Hanes S, Trachewsky D, et al. Atrial natriuretic peptide mRNA is regulated by glucocorticoids in vivo. Biochem Biophys Res Commun 1986;139:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  161. Lachance D, Garcia P, Gutkowska J, et al. Mechanisms of release of atrial natriuretic factor. 1. Effect of several agonists and steroids on its release by atrial minces. Biochem Biophys Res Commun 1986;135: 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  162. Day ML, Schwartz D, Wiegand RC, et al. Ventricular atriopeptin: unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone. Hypertension 1987;9:485–491.

    PubMed  CAS  Google Scholar 

  163. Matsubara H, Hirata Y, Yoshimi H, et al. Ventricular myocytes from neonatal rats are more responsive to dexamethasone than atrial myocytes in synthesis of atrial natriuretic peptide. Biochem Biophys Res Commun 1987;148:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  164. Weidman P, Matter DR, Matter EE, et al. Glucocorticoid and mineralocorticoid stimulation of atrial natriuretic peptide release in man. J Clin Endocrinol Metab 1988;66:1233–1239.

    Article  Google Scholar 

  165. Wintour EM, Cooper E, McDougall JG, et al. The interrelationship between Cortisol and atrial natriuretic factor in the immature ovine fetus. Clin Exp Pharmacol Physiol 1989;16:737–744.

    Article  PubMed  CAS  Google Scholar 

  166. Roy RN, Chance GW, Radde IC, et al. Late hyponatremia in very low birthweight infants (< 1.3 kilograms). Pediatr Res 1976;10:526–531.

    Article  PubMed  CAS  Google Scholar 

  167. Day GM, Radde IC, Balfe JW, et al. Electrolyte abnormalities in very low birthweight infants. Pediatr Res 1976;10:522–526.

    Article  PubMed  CAS  Google Scholar 

  168. Bidiwala KS, Lorenz JM, Kleinman LI. Renal function correlates of postnatal diuresis in preterm infants. Pediatrics 1988;82:50–58.

    PubMed  CAS  Google Scholar 

  169. Noguchi A, Reynolds JW. Serum Cortisol and dehy-droepiandrosterone sulfate responses to adrenocorti-cotropin stimulation in premature infants. Pediatr Res 1978;12:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  170. Sulyok E, Kovacs L, Lichardus B, et al. late hyponatremia in premature infants: role of aldosterone and arginine vasopressin. J Pediatr 1985;106:990–994.

    Article  PubMed  CAS  Google Scholar 

  171. Wintour EM, Coghlan JP, Hardy KJ, et al. Placental transfer of aldosterone in the sheep. J Endocrinol 1980;86:305–310.

    Article  PubMed  CAS  Google Scholar 

  172. Lingwood B, Hardy KJ, Coghlan JP, et al. Effect of aldosterone on urine composition in the chronically cannulated ovine fetus. J Endocrinol 1978;76:553–554.

    Article  PubMed  CAS  Google Scholar 

  173. Robillard JE, Nakamura KT, Lawton WJ. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res 1985;19:1048–1052.

    Article  PubMed  CAS  Google Scholar 

  174. Wintour EM, Laurence BM, Lingwood BE. Anatomy, physiology and pathology of the amniotic and allantoic compartments in the sheep and cow. Aust Vet J 1986;63:216–221.

    Article  PubMed  CAS  Google Scholar 

  175. Thomas I, Smith DW. Oligohydramnios, cause of the nonrenal features of Potter’s syndrome, including pulmonary hypoplasia. J Pediatr 1974;84:811–814.

    Article  PubMed  CAS  Google Scholar 

  176. Bresson JL, Clavequin M-C, Fellman D, et al. Anatomical and ontogenetic studies of the human para-ventriculoinfundibular corticoliberin system. Neuroscience 1985;14:1077–1090.

    Article  PubMed  CAS  Google Scholar 

  177. Levidiotis M, Oldfield B, Wintour EM. Cortico-trophin-releasing factor and arginine vasopressin fibre projections to the median eminence of fetal sheep. Neuroendocrinology 1987;46:453–456.

    Article  PubMed  CAS  Google Scholar 

  178. Ervin MG. Perinatal fluid and electrolyte regulation: role of arginine vasopressin. Semin Perinatol 1988;12:134–142.

    PubMed  CAS  Google Scholar 

  179. Lingwood B, Hardy KJ, Horacek I, et al. The effects of antidiuretic hormone on urine flow and composition in the chronically cannulated ovine fetus. Q J Exp Physiol 1978;63:315–330.

    CAS  Google Scholar 

  180. Edelman CM Jr, Barnett HL, Troupkou V. Renal concentrating mechanism in newborn infants: effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J Clin Invest 1960;39:1062–1069.

    Article  Google Scholar 

  181. Smith FG, Lumbers ER, Kesby GJ. The renal response to the ingestion of fluid by the fetal sheep. J Dev Physiol 1986;8:259–266.

    PubMed  CAS  Google Scholar 

  182. Bell RJ, Wintour EM. The effect of maternal water deprivation on ovine fetal blood volume. Q J Exp Physiol 1985;70:95–99.

    PubMed  CAS  Google Scholar 

  183. Lotgering FK, Wallenberg HCS. Mechanisms of production and clearance of amniotic fluid. Semin Perinatol 1986;10:94–102.

    PubMed  CAS  Google Scholar 

  184. Wintour EM. Amniotic fluid-our first environment. News Physiol Sci 1986;1:95–97.

    CAS  Google Scholar 

  185. Cassady G, Barnett R. Amniotic fluid electrolytes and perinatal outcome. Biol Neonate 1968;13:155–174.

    Article  CAS  Google Scholar 

  186. Page KR, Abramovich DR, Garden AS, et al. Solute levels in uterine fluids of patients with normal values of amniotic fluid and with hydramnios. Eur J Obstet Gynecol Reprod Biol 1978;8:287–293.

    Article  CAS  Google Scholar 

  187. Queenan JT, Thompson W, Whitfield CR, et al. Amniotic fluid volumes in normal pregnancies. Am J Obstet Gynecol 1972;114:34–38.

    PubMed  CAS  Google Scholar 

  188. Lingwood BE, Wintour EM. Amniotic fluid volume and in vivo permeability of ovine fetal membranes. Obstet Gynecol 1984;64:368–372.

    PubMed  CAS  Google Scholar 

  189. Lingwood BE, Wintour EM. Permeability of ovine amnion and amniochorion to urea and water. Obstet Gynecol 1983;61:227–232.

    PubMed  CAS  Google Scholar 

  190. Wintour EM, Lingwood BE, Towstoless MK. Passive permeability of ovine amnion and allantois to chloride-gestational changes. Placenta 1988;9:599–606.

    Article  PubMed  CAS  Google Scholar 

  191. Hardy MA. Stirring a controversy: are there or are there not transcellular pathways for the diffusion of small nonelectrolytes in human amnion? In Bel-fort P, Pinotti JA, Eskes TKAB, eds: Proceedings of the XII International Congress of Gynecology and Obstetrics. Carnforth, UK: Parthenon Publishing, 1989.

    Google Scholar 

  192. Abramovich DR. Fetal control of amniotic fluid volume in the human. In Beifort P, Pinotti JA, Eskes TKAB, eds: Proceedings of the XII International Congress of Gynecology and Obstetrics. Carnforth, UK: Parthenon Publishing, 1989.

    Google Scholar 

  193. Cabrol D, Landesman R, Muller J, et al. Treatment of polyhydramnios with prostaglandin synthetase inhibitor (indomethacin). Am J Obstet Gynecol 1987;157: 422–426.

    PubMed  CAS  Google Scholar 

  194. Kirshon B, Moise KJ, Wasserstrum N, et al. Influence of short-term indomethacin therapy on fetal urine output. Obstet Gynecol 1988;72:51–53.

    PubMed  CAS  Google Scholar 

  195. Perry JS. The mammalian fetal membranes. J Reprod Fertil 1981;62:321–335.

    Article  PubMed  CAS  Google Scholar 

  196. Bazer FW. Allantoic fluid: regulation of volume and composition. In Brace RA, Robillard JE, Ross MG, eds: Fetal and Neonatal Body Fluids: The Scientific Basis of Clinical Practice. Ithaca, NY: Perinatology Press, 1989;135–157.

    Google Scholar 

  197. Wlodek ME, Challis JRG, Patrick J. Urethral and urachal urine output to the amniotic and allantoic sacs in fetal sheep. J Dev Physiol 1988;10:309–319.

    PubMed  CAS  Google Scholar 

  198. Ross MG, Ervin MG, Rappaport VJ, et al. Ovine fetal urine contribution to amniotic and allantoic compartments. Biol Neonate 1988;53:98–104.

    Article  PubMed  CAS  Google Scholar 

  199. Mellor DJ, Slater JS, Matheson IC. Effect of changes in ambient temperature on maternal plasma and allantoic fluid from chronically catheterised ewes during the last two months of pregnancy. Res Vet Sci 1975;18:219–221.

    PubMed  CAS  Google Scholar 

  200. Mellor DJ, Slater JS, Cockburn F. Effects of antibiotic treatment on the composition of sheep foetal fluids. Res Vet Sci 1971;12:521–526.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Wintour, E.M. (1991). Water Metabolism in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics