Skip to main content

Lipid Metabolism in the Fetal-Placental Unit

  • Chapter
Principles of Perinatal-Neonatal Metabolism

Abstract

In utero the fetus is constantly infused with substrate from the placenta. At birth this transfer is halted abruptly, and the infant must utilize endogenous substrates for glucose homeostasis. To prepare for this change from exogenous to endogenous substrate, late in gestation the fetus increases fuel storage in the form of glycogen and lipid. During the immediate postnatal period, glycogen is used to maintain glucose homeostasis, and after the depletion of glycogen, gluconeo-genesis is activated. Equally important, the initiation of oxidation of substrate other than glucose is necessary to decrease the neonate’s dependence on glucose as the primary energy source. The activation of lipoly-sis and the initiation of fatty acid and ketone body oxidation provide the neonate with such an alternative energy source. This changing pattern of substrate oxidation is reflected by a fall in the respiratory quotient from 1.0 to 0.7 during the first 3 days of life when fatty acids become the preferred substrate in a number of tissues with high energy demands.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cross KW, Tizard JP, Trythall DA. The gaseous metabolism of the newborn infants. Acta Paediatr Scand 1957;46:265–285.

    Article  CAS  Google Scholar 

  2. Senterre J, Karlberg P. Respiratory quotient and metabolic rate in normal full-term and small for date newborn infants. Acta Paediatr Scand 1970;59:653–658.

    Article  PubMed  CAS  Google Scholar 

  3. Denne SC, Kalhan SM. Glucose carbon recycling and oxidation in human newborns. Am J Physiol 1986;251: E71–E77.

    PubMed  CAS  Google Scholar 

  4. Gewolb IH, Warshaw JB. Influences on fetal growth. In Warshaw JB ed: The Biological Basis of Reproductive and Developmental Medicine. New York: Elsevier, 1983;365–389.

    Google Scholar 

  5. Widdowson E. Chemical composition of newly born animals. Nature 1950;116:626–628.

    Article  Google Scholar 

  6. Camerer W. Die chemische Zusammensetzung des neugeborenen Menschen. Z Biol 1902;43:1–12.

    CAS  Google Scholar 

  7. Iob V, Swanson WW. Mineral growth of the human fetus. Am J Dis Child 1934;47:302–306.

    CAS  Google Scholar 

  8. Fee BA, Weil WB. Body composition of infants of diabetic mothers by direct analysis. Ann NY Acad Sci 1963;110:869–897.

    Article  PubMed  CAS  Google Scholar 

  9. Ziegler EE, O’Donnell AM, Nelson SE, et al. Body composition of the reference fetus. Growth 1976;40: 329–341.

    PubMed  CAS  Google Scholar 

  10. Knopp RH. Fuel metabolism in pregnancy. Contemp Obstet Gynecol 1978;12(l):83–90.

    Google Scholar 

  11. Knopp RH, Saudek CD, Arky RA, et al. Two phases of adipose tissue metabolism in pregnancy: maternal adaptations for fetal growth. Endocrinology 1973;92: 984–988.

    Article  PubMed  CAS  Google Scholar 

  12. Fain JN, Scow RO. Fatty acid synthesis in vivo in maternal and fetal tissues in the rat. Am J Physiol 1966; 210:19–25.

    CAS  Google Scholar 

  13. Elliot JA. The effect of pregnancy on the control of lipolysis in fat cells isolated from human adipose tissue. Eur J Clin Invest 1975;5:159–163.

    Google Scholar 

  14. Knopp RH, Montes A, Childs M, et al. Metabolic adjustments in normal and diabetic pregnancy. In Seeds AE, ed. Clinical Obstetrics and Gynecology. Hager-stown: Harper & Row, 1981;21–49.

    Google Scholar 

  15. Hummel L, Schirrmeister W, Zimmerman T. Transfer of maternal plasma free fatty acids into the rat fetus. Acta Biol Med Germ 1975;34:603–605.

    PubMed  CAS  Google Scholar 

  16. Elphick MC, Hudson DG, Hull D. Transfer of free fatty acids across the rabbit placenta. J Physiol (Lond) 1975; 252:29–42.

    CAS  Google Scholar 

  17. Van Duyne CM, Havel RJ, Felts JM. Placental transfer of palmitic acid-l-14C in rabbits. Am J Obstet Gynecol 1962;84:1069–1074.

    Google Scholar 

  18. Goldstein R, Levy E, Shafrir E. Increased maternal-fetal transport of fat in diabetes assessed by polyunsaturated fatty acid content in fetal lipids. Biol Neonate 1985;47:343–349.

    Article  PubMed  CAS  Google Scholar 

  19. Stammers JP, Elphick MC, Hull D. Effect of maternal diet during late pregnancy on fetal lipid stores in rabbits. J Dev Physiol 1983;5:395–404.

    PubMed  CAS  Google Scholar 

  20. Hendrickse W, Stammers JP, Hull D. The transfer of free fatty acids across the human placenta. Br J Obstet Gynaecol 1985;92:945–952.

    Article  PubMed  CAS  Google Scholar 

  21. Elphick MC, Hull D. The transfer of free fatty acids across the rabbit placenta. J Physiol (Lond) 1977;264: 751–766.

    CAS  Google Scholar 

  22. Thomas CR, Lowy C. Placental transfer of free fatty acids: factors affecting transfer across the guinea pig placenta. J Dev Physiol 1983;5:323–332.

    PubMed  CAS  Google Scholar 

  23. Dancis J, Jansen V, Kayden JH, et al. Transfer across perfused human placenta. III. Effect of chain length on transfer of free fatty acids. Pediatr Res 1974;8:796–799.

    Article  PubMed  CAS  Google Scholar 

  24. Hershfield MS, Nemeth AM. Placental transport of free palmitic and linoleic acids in the guinea pig. J Lipid Res 1968;9:460–468.

    PubMed  CAS  Google Scholar 

  25. Schenker S, Dawber NH, Schmid R. Bilirubin metabolism in the fetus. J Clin Invest 1964;43:32–39.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas CR, Evans JL, Buttriss C, et al. Lipid chain length alterations during placental transfer in the guinea pig. J Dev Physiol 1985;7:305–311.

    PubMed  CAS  Google Scholar 

  27. Noble RC, Shand JH, Christie WW. Synthesis of C20 and C22 polyunsaturated fatty acids by the placenta of the sheep. Biol Neonate 1985;47:333–338.

    Article  PubMed  CAS  Google Scholar 

  28. Knopp RH, Warth MR, Charles D, et al. Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biol Neonate 1986; 50:297–317.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas CR. Placental transfer of non-esterified fatty acids in normal and diabetic pregnancy. Biol Neonate 1987;51:94–101.

    Article  PubMed  CAS  Google Scholar 

  30. Elphick MC, Hull D, Sanders RR. Concentrations of free fatty acids in maternal and umbilical cord blood during elective caesarean section. Br J Obstet Gynaecol 1976;83:539–544.

    Article  PubMed  CAS  Google Scholar 

  31. Persson B, Tunell R. Influence of environmental temperature and acidosis on lipid mobilization in the human infant during the first two hours after birth. Acta Paediatr Scand 1971;60:385–398.

    Article  PubMed  CAS  Google Scholar 

  32. Dancis J, Jansen V, Kayden JH, et al. Transfer across perfused human placenta. II. Free fatty acids. Pediatr Res 1973;7:192–197.

    Article  PubMed  CAS  Google Scholar 

  33. Coleman RA. Placental metabolism and transport of lipid. Fed Proc 1986;45:2519–2523.

    PubMed  CAS  Google Scholar 

  34. Hummel L, Zimmermann T, Wagner H. Quantitative evaluation of the fetal fatty acid synthesis in the rat. Acta Biol Med Germ 1978;37:229–232.

    PubMed  CAS  Google Scholar 

  35. Portman OW, Behrman RE, Soltys P. Transfer of free fatty acids across the primate placenta. Am J Physiol 1969;216:143–147.

    PubMed  CAS  Google Scholar 

  36. Bressler R, Wakil S. Studies on the mechanism of fatty acid synthesis. I. The conversion of malonyl coenzyme A to long chain fatty acids. J Biol Chem 1961;236: 1643 – 1651.

    CAS  Google Scholar 

  37. Warshaw JB, Kimura RE. Cellular energy metabolism during fetal development. V. Fatty acid synthesis by the developing heart. Dev Biol 1973;33:224–228.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor CV, Bailey E, Bartley W. Changes in hepatic lipogenesis during development of rat. Biochem J 1967; 105:717–722.

    PubMed  CAS  Google Scholar 

  39. Ballard FJ, Hanson RW. Changes in lipid synthesis in rat liver during development. Biochem J 1967; 102: 952–958.

    PubMed  CAS  Google Scholar 

  40. Villee CA, Hagerman DD. Effect of oxygen deprivation on the metabolism of fetal and adult tissues. Am J Physiol 1958;194:457–464.

    PubMed  CAS  Google Scholar 

  41. Roux JF. Lipid metabolism in the fetal and neonatal rabbit. Metabolism 1966;15:856–864.

    Article  PubMed  CAS  Google Scholar 

  42. Farrell PM, Bourbon JR. Fetal lung surfactant lipid synthesis from glycogen during organ culture. Biochim Biophys Acta 1986;878:159–167.

    PubMed  CAS  Google Scholar 

  43. Maniscalco W, Finkelstein JN, Parkhurst AB. De nova fatty acid synthesis in developing rat lung. Biochim Biophys Acta 1982;711:49–58.

    PubMed  CAS  Google Scholar 

  44. Engle MJ, Brown DJ, Dehring AF, et al. Effect of lactate on glucose incorporation into fetal lung phospholipids. Exp Lung Res 1988;14:121–129.

    Article  PubMed  CAS  Google Scholar 

  45. Robertson JP, Faulkner A, Verson RG. L-Lactate as a source of carbon for fatty acid synthesis in adult and foetal sheep. Biochim Biophys Acta 1981;665:511–518.

    PubMed  CAS  Google Scholar 

  46. Medina JM. The role of lactate as an energy substrate for the brain during the early neonatal period. Biol Neonate 1985;48:237–244.

    Article  PubMed  CAS  Google Scholar 

  47. Vernon RG, Finley E, Taylor E. Fatty acid synthesis from amino acids in sheep adipose tissue. Comp Biochem Physiol [B] 1985;82:133–136.

    Article  CAS  Google Scholar 

  48. Seccombe DW, Harding PGR, Possmayer F. Fetal utilization of maternally derived ketone bodies for lipogenesis in the rat. Biochim Biophys Acta 1977;488:402–416.

    PubMed  CAS  Google Scholar 

  49. Edmond J. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 1974;249: 72–78.

    PubMed  CAS  Google Scholar 

  50. Ktorza A, Nurjhan N, Girard JR, et al. Hyperplycaemia induced by glucose infusion in the unrestrained pregnant rat: effect on body weight and lipid synthesis in post-mature fetuses. Diabetologia 1983;24:128–130.

    Article  PubMed  CAS  Google Scholar 

  51. Ktorza A, Bihoreau M, Nurjhan NEA. Insulin and glucagon during the perinatal period: secretion and metabolic effects on the liver. Biol Neonate 1985;48: 204–220.

    Article  PubMed  CAS  Google Scholar 

  52. Girard JR, Cuendet GS, Marliss EB, et al. Fuels, hormones and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest 1973;52: 3190–3200.

    Article  PubMed  CAS  Google Scholar 

  53. Witters LZ, Moriarity D, Martin DB. Regulation of hepatic acetyl-CoA carboxylase by insulin and glucagon. J Biol Chem 1979;254:6644–6649.

    PubMed  CAS  Google Scholar 

  54. Geelen MJH, Beynen AC, Christiansen RZ, et al. Short-term effect of insulin and glucagon on lipid synthesis in isolated rat hepatocytes: covariance of acetyl-CoA carboxylase activity and the rat of 3H2O incorporation into fatty acids. FEBS Lett 1978;95:326–330.

    Article  PubMed  CAS  Google Scholar 

  55. McGarry JD, Takabayashi Y, Foster DW. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem 1978;253:8294–8300.

    PubMed  CAS  Google Scholar 

  56. McGarry JD, Leatherman GF, Foster DW. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem 1978;253:4128–4136.

    PubMed  CAS  Google Scholar 

  57. Harris R. Studies on the inhibition of hepatic lipogene-sis by N6, O2-dibutyryl adenosine 3’, 5’-monophos-phate. Arch Biochem Biophys 1975;169:168–180.

    Article  PubMed  CAS  Google Scholar 

  58. Picon L. Effect of insulin on growth and biochemical composition of the rat fetus. Endocrinology 1967;81: 1491–1421.

    Article  Google Scholar 

  59. Clark CM, Cahill GF, Soeldner J. Effects of exogenous insulin on the rate of fatty acid synthesis and glucose C-14 utilization in the twenty-day rat fetus. Diabetes 1968;17:362–368.

    PubMed  CAS  Google Scholar 

  60. Blazquez E, Rubalcaua B, Montesano REA. Development of insulin and glucagon binding and the adenylate cyclase response in liver membranes of the prenatal, postnatal and adult rat: evidence of glucagon resistance. Endocrinology 1976;98:1014–1023.

    Article  PubMed  CAS  Google Scholar 

  61. Maniscalco W, Loo S, Warshaw JB. Ontogeny of insulin action on developing liver. Pediatr Res 1976;10:324A.

    Google Scholar 

  62. Miller JD, Sinha MK, Sperling MA, et al. Insulin stimulates amino acid and lipid metabolism in isolated fetal rat hepatocytes. Pediatr Res 1986;20:609–612.

    PubMed  CAS  Google Scholar 

  63. Yamaguchi M, Momose K, Takahashi K. Stimulatory effect of calcitonin on fatty acid synthesis in the liver of fed rats. Horm Metab Res 1985;17:346–350.

    Article  PubMed  CAS  Google Scholar 

  64. Holand R, Hardie DG. Both insulin and epidermal growth factor stimulate fatty acid synthesis and increased phosphorylatin of acetyl-CoA carboxylase and ATP-citrate lyase in isolated hepatocytes. FEBS Lett 1985;181:308–312.

    Article  Google Scholar 

  65. Martin RJ, Campion DR, Hausman GJ, et al. Serum hormones and metabolites in fetally decapitated pigs. Growth 1984;48:158–165.

    PubMed  CAS  Google Scholar 

  66. Ramsey TG, Hausman GJ, Martin RJ. Metabolic development of porcine fetal adipose tissue: a role for central regulation. Biol Neonate 1988;53:171–180.

    Article  Google Scholar 

  67. Towle HC, Mariash CN. Regulation of hepatic gene expression by lipogenic diet and thyroid hormone. Fed Proc 1986;45:2406–2411.

    PubMed  CAS  Google Scholar 

  68. Katsurada A, Iritani N, Fukuda H, et al. Effects of dietary nutrients on lipogenic enzyme and mRNA activities in rat liver during induction. Biochim Biophys Acta 1986;877:350–358.

    PubMed  CAS  Google Scholar 

  69. Duee PH, Pegorier JP, Manoubi L, et al. Hepatic triglyceride hydrolysis and development of ketogenesis in rabbits. Am J Physiol 1985;249:E478–E484.

    PubMed  CAS  Google Scholar 

  70. Roux JB, Myers RE. In vitro metabolism of palmitic acid and glucose in the developing tissue of the rhesus monkey. Am J Obstet Gynecol 1974;118:385–392.

    PubMed  CAS  Google Scholar 

  71. Warshaw JB. Cellular energy metabolism during fetal development. IV. Fatty acid activation, acetyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biol 1972;28:537–544.

    Article  PubMed  CAS  Google Scholar 

  72. Bailey E, Lockwood E. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat. Enzyme 1973;15:239–253.

    PubMed  CAS  Google Scholar 

  73. Augenfeld J, Fritz I. Carnitine palmityltransferase activity in fatty acid oxidation by livers from fetal and neonatal rats. Can J Biochem 1970;48:228–294.

    Article  Google Scholar 

  74. Zimmermann T, Hummer L, Wagner H. Quantitative studies on the fetal lipid metabolism in rats: liver fatty acid esterification and conversion into carbon dioxide, and hepatic output of triglycerides and phospholipids into serum. Biol Neonate 1986;49:43–50.

    Article  PubMed  CAS  Google Scholar 

  75. Warshaw JB. Cellular energy metabolism. III. Deficient acetyl-CoA synthetase, acetylcarnitine transferase and oxidation of acetate in fetal bovine heart. Biochim Biophys Acta 1970;223:409–415.

    Article  PubMed  CAS  Google Scholar 

  76. Lindsay DB. Fatty acids as energy sources. Proc Nutr Soc 1975;34:241–248.

    Article  PubMed  CAS  Google Scholar 

  77. Fritz IB. Factors influencing the rate of long chain fatty acid oxidation and synthesis in mammalian systems. Physiol Rev 1961;41:52–129.

    PubMed  CAS  Google Scholar 

  78. Blazquez E, Sagase T, Blazquez M, et al. Neonatal changes in the concentration of rat liver cyclic AMP and serum glucose, FFA, insulin pancreatic glucagon and total glucagon in man and the rat. J Lab Clin Med 1974;83:957–967.

    PubMed  CAS  Google Scholar 

  79. Novak M, Melichar V, Hahn P, et al. Release of free fatty acids from adipose tissue obtained from newborn infants. J Lipid Res 1965;6:91–95.

    PubMed  CAS  Google Scholar 

  80. Novak M, Monkus E. Metabolism of subcutaneous adipose tissue in the immediate postnatal period of human newborns. I. Developmental changes in lipolysis and glycogen content. Pediatr Res 1972;6:73–80.

    PubMed  CAS  Google Scholar 

  81. Ogiwara H, Tanabe T, Nikawa J, et al. Inhibition of rat liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A: formation of equimolar enzyme inhibitor complex. Eur J Biochem 1978;89:33–41.

    Article  PubMed  CAS  Google Scholar 

  82. McGarry JD, Robles-Valdes C, Foster DW. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci USA 1975;72:4385–4388.

    Article  PubMed  CAS  Google Scholar 

  83. Bewsher PD, Tarrant ME, Ashmore J. Effects of fat mobilization on liver metabolism. Diabetes 1966; 15: 346–350.

    PubMed  CAS  Google Scholar 

  84. Chalk PA, Higham FC, Caswell AM, et al. Hepatic mitochondrial fatty acid oxidation during the perinatal period in the rat. Int J Biochem 1983;15:531–538.

    Article  PubMed  CAS  Google Scholar 

  85. Escriva F, Ferre P, Robin D, et al. Evidence that the development of hepatic fatty acid oxidation at birth in the rat is concomitant with an increased intramitochondrial CoA concentration. Eur J Biochem 1986;156:603–607.

    Article  PubMed  CAS  Google Scholar 

  86. Robles-Valdes C, McGarry JD, Foster DW. Maternal-fetal carnitine relationships and neonatal ketosis in the rat. J Biol Chem 1976;251:6007–6012.

    PubMed  CAS  Google Scholar 

  87. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 1977;60: 265 – 270.

    Article  PubMed  CAS  Google Scholar 

  88. Cook GA, King MT, Veech RL. Ketogenesis and malonyl coenzyme A content of isolated rat hepato-cytes. J Biol Chem 1978;253:2529–2531.

    PubMed  CAS  Google Scholar 

  89. Herbin C, Duee PH, Pegorier JP, et al. Premature appearance of gluconeogenesis and fatty acid oxidation in the liver of the postterm rabbit fetus. Pediatr Res 1988;23:224–228.

    Article  PubMed  CAS  Google Scholar 

  90. Philipps AF, Dubin JW, Matty PJ, et al. Influence of exogenous glucagon on fetal glucose metabolism and ketone production. Pediatr Res 1983;17:51–56.

    Article  PubMed  CAS  Google Scholar 

  91. Decaux JF, Ferre P, Robin D, et al. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration. J Biol Chem 1988;263:3284–3289.

    PubMed  CAS  Google Scholar 

  92. Bielefeld DR, Vary TC, Neely JR. Inhibition of carnitine palmitoylCoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol 1985;17:619–625.

    Article  PubMed  CAS  Google Scholar 

  93. Paterson P, Sheath J, Taft P, et al. Maternal and foetal ketone concentration in plasma and urine. Lancet 1967;1:862–865.

    Article  PubMed  CAS  Google Scholar 

  94. Shambaugh GEJ, Mrozak SC, Freinkel N. Fetal fuels. I. Utilization of ketones by isolated tissues at various stages of maturation and maternal nutrition during late gestation. Metabolism 1977;26:263–265.

    Article  Google Scholar 

  95. Shambaugh GEJ, Koehler RR, Yokoo H. Fetal fuels. III. Ketone utilization by fetal hepatocyte. Am J Physiol 1978;235:E330–E337.

    PubMed  CAS  Google Scholar 

  96. Scow RO, Chernick SS, Smith BB. Ketosis in the rat fetus. Proc Soc Exp Biol Med 1958;98:833–835.

    PubMed  CAS  Google Scholar 

  97. Dierkes-Vesting C. Prenatal induction of ketone-body enzymes in the rat. Biol Neonate 1971;19:426–433.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kimura, R.E. (1991). Lipid Metabolism in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics