Advertisement

Bronchoalveolar and Serum Markers of Lung Disease

  • Yves Sibille
  • William W. Merrill
Chapter
  • 115 Downloads

Abstract

Although bronchial washings were originally performed with the rigid bronchoscope for various therapeutic purposes, the bronchoalveolar lavage (BAL) technique was developed in the 1970s, shortly after the flexible fiberoptic bronchoscope became widely used (1,2). The sampling of fluid from the lower respiratory tract is now rarely therapeutic. Now such examinations are performed for diagnostic and experimental purposes, providing useful information on both cellular and soluble components of the epithelial lining fluid. The morbidity of the bronchoalveolar lavage is minimal, mostly related to the bronchoscopy procedure, and consists essentially of fever (1 to 2% of cases), easily controlled with antipyretic drugs in most instances. Rarely infection and bleeding occur (3,4).

Keywords

Alveolar Macrophage Idiopathic Pulmonary Fibrosis Bronchoalveolar Lavage Interstitial Lung Disease Alveolar Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantrell ET, Warr GA, Busbee DL, et al: Induction of aryl hydrocarbon hydroxylase in human pulmonary alveolar macrophages by cigarette smoking. J clin Invest 52:1881–1884,1974CrossRefGoogle Scholar
  2. 2.
    Daniele RP, Altrose MD, Rowland DT Jr: Immunocompetent cells from the lower respiratory tract of normal human lungs. J Clin Invest 56:986–996, 1975PubMedCrossRefGoogle Scholar
  3. 3.
    Strumpf IJ Feld MK, Cornelius M, et al: Safety of fiberoptic bronchoalveolar lavage in evaluation of interstitial lung disease. Chest 80:268–271, 1980CrossRefGoogle Scholar
  4. 4.
    Ackart RS, Foreman DR, Klayton RJ, Donlan CJ, Munzel TL, Schuler MA: Fiberoptic bronchoscopy in facilities, 1982. Arch Intern Med 143:30–31, 1983PubMedCrossRefGoogle Scholar
  5. 5.
    Merrill WW, O’Hearn E, RankinJ, etal: Kinetic analysis of respiratory tract proteins recovered during a sequential lavage protocol. Am Rev Respir Dis 126:617–620, 1982PubMedGoogle Scholar
  6. 6.
    Saltini C, Hance AJ, Ferrans VJ, Basset F, Bitterman PB, Crystal RG: Accurate quantification of cells recovered by bronchoalveolar lavage. Am Rev Respir Dis 130:650–658, 1984PubMedGoogle Scholar
  7. 7.
    Mordelet-Dambrine M, Arnoux A, Stanislas-Leguern G, Sandron D, Chretien J, Huchon G: Processing of lung lavage fluid causes variability in bronchoalveolar cell count. Am Rev Respir Dis 130:305–306, 1984PubMedGoogle Scholar
  8. 8.
    Merrill WW, Reynolds HY: Bronchial lavage in inflammatory lung disease. Clin Chest Med 4(1):71–84, 1983PubMedGoogle Scholar
  9. 9.
    Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG, Crystal RG: Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 60:532–538, 1986PubMedGoogle Scholar
  10. 10.
    Baughman RP, Bosken CH, Loudon RG, et al: Quantitation of bronchoalveolar lavage with methylene blue. Am Rev Respir Dis 128:266–270, 1983PubMedGoogle Scholar
  11. 11.
    Hunnighake GW, Gadek JE, Kawanami O, et al: Inflammatory and immune processes in the human lung in health and disease: Evaluation by bronchoalveolar lavage. Am J Pathol 97: 149–206, 1979Google Scholar
  12. 12.
    Blusse van oud Alblas A, van Furth R: The origin of pulmonary macrophages. Immunobiology 161: 186–192. 1982CrossRefGoogle Scholar
  13. 13.
    Mackaness GB: The mechanism of macrophage activation, in Mudd S (ed): Infectious Agents and Host Reactions. Philadelphia, WB Saunders, 1970, pp 61–75Google Scholar
  14. 14.
    Reynolds HY: Respiratory infections may reflect deficiencies in host defense mechanisms. DM, February 1985Google Scholar
  15. 15.
    Lyons CR, Lipscomb MF: Alveolar macrophages in pulmonary immune responses; role in the initiation of primary immune responses and in the selective recruitment of T lymphocytes to the lung. J Immunol 130: 1113–1119, 1983PubMedGoogle Scholar
  16. 16.
    Razma AG, Lynch JP, Wilson BS. et al: Expression of la-like (DR) antigen on human alveolar macrophages isolated by bronchoalveolar lavage. Am Rev Respir Dis 129:419–424,1984PubMedGoogle Scholar
  17. 17.
    Johnson KJ, Ward PA, Kunkel RG, Wilson BS: Mediation of 19a-induced investigation injury in the rat. Role of macrophages and reactive oxygen products. Lab Invest 54:499–506, 1986PubMedGoogle Scholar
  18. 18.
    Du Bois RM: The alveolar macrophage. Thorax 40:321–327, 1985PubMedCrossRefGoogle Scholar
  19. 19.
    Fels AOS, Cohn ZA: The alveolar macrophage. J Appl Physiol 60:353–369, 1986 PubMedGoogle Scholar
  20. 20.
    Sibille Y, Merrill WW, Cooper JA, Polomski L, Gee JBL: Effects of a series of chloromethylketone protease inhibitors on superoxide release and the glutathione system in human polymorphonuclear leukocytes and alveolar macrophages. Am Rev Respir Dis 130: 110–114, 1984PubMedGoogle Scholar
  21. 21.
    Fantone JC, Ward PA III: Mechanism of lung parenchymal injury. Am Rev Respir Dis 130:484–490, 1984Google Scholar
  22. 22.
    Merrill WW, Naegel GP, Matthay RA, et al: Alveolar macrophage derived chemotactic factor: Kinetics of in vitro production and partial characterization. J Clin Invest 65:268–276, 1980PubMedCrossRefGoogle Scholar
  23. 23.
    Reynolds HY: Lung inflammation: Role of endogenous chemotactic factors that attract polymorphonuclear granulocytes. Am Rev Respir Dis 127:516–525, 1983Google Scholar
  24. 24.
    Welgus HG, Campbell EJ, Bar-Shavit Z, et al: Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest 76:219- 224, 1985PubMedCrossRefGoogle Scholar
  25. 25.
    Elias JA, Rossman MD, Zurier RB, Daniele RP: Human alveolar macrophage inhibition of lung fibroblast growth: A prostaglandin-dependent process. Am Rev Respir Dis 131:94–99, 1985PubMedGoogle Scholar
  26. 26.
    Dauber JH, Holian ME, Rosemiller ME, Daniele RP: Separation of bronchoalveolar cells from the guinea pig on continuous density gradients of Percoll: Morphology and cytochemical properties of fractionated lung macrophages. J Reticuloendothel Soc 33: 119–126, 1983PubMedGoogle Scholar
  27. 27.
    Hohan A, Dauber JH, Diamond MS, Daniele RP: Separation of bronchoalveolar cells from the guinea pig on continuous gradients of Percoll: Functional properties of fractioned lung macrophages. J Reticllioendothel Soc 33:157–164,1983Google Scholar
  28. 28.
    Jeffery PK, Corrin B: Structural analysis of the respiratory tract, in Bienenstock J (ed): Immunology of the Lung and Upper Respiratory Tract. New York, McGraw- Hill Book Company, 1984, pp 1–27Google Scholar
  29. 29.
    Evans MJ, Cabral-Anderson LJ, Stephens RJ, et al: Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pafhol 70: 175–198, 1973Google Scholar
  30. 30.
    Tomasi TB: Secretory immunoglobulins. N Engl J Med 287:500–506. 1972CrossRefGoogle Scholar
  31. 31.
    Harris JO, Swenson EW, Johnson JE: Human alveolar macrophages: Comparison of phagocytic ability, glucose utilization, and ultrastructure in smokers and nonsmokers. J Clin Invest 69:2086–2096, 1970CrossRefGoogle Scholar
  32. 32.
    Daniele RP, Elias JA, Epstein PE, et al: Bronchoalveolar lavage: Role in the pathogenesis, diagnosis, and management of interstitial lung disease.Ann Intern Med 102:93- 108, 1985PubMedGoogle Scholar
  33. 33.
    Merrill WW, Goodenberger D, Strober W, et al: Free secretory component and other proteins in human lung lavage. Am Rev Respir Dis 122:156–161. 1980PubMedGoogle Scholar
  34. 34.
    Gadek JE, Fellis GA, Crystal RG: Cigarette smoking induces functional anti protease deficiency in the lower respiratory tract of humans. Science 206: 1315–1316, 1979PubMedCrossRefGoogle Scholar
  35. 35.
    Merrill WW, Barwick KW, Madril, StroberW, Matthay RA, et al: Bronchial lavage proteins as correlates of histopathologic airway changes in healthy smokers and patients with pulmonary carcinoma. Am Rev Respir Dis 130:905–909, 1984PubMedGoogle Scholar
  36. 36.
    Robertson J, Cardwell JR, Castle JR, et al: Evidence for the presence of components of the alternate (properdin) pathway of complement activation in respiratory secretions. J Immunol 117:900–903. 1976PubMedGoogle Scholar
  37. 37.
    Marcy TW, Reynolds HY: Pulmonary histiocytosis X. Lung 163:129–150,1985PubMedCrossRefGoogle Scholar
  38. 38.
    Basset F, Soler P, Jaurand MC, Bignon J: Ultrastructural examination of bronchoalveolar lavage for diagnosis of pulmonary histiocystosis X. Thorax 32:303–306, 1977PubMedCrossRefGoogle Scholar
  39. 39.
    Chollet S, Dournovo P, Richard MS, Soler P, Basset F: Reactivity of histiocytosis X cells with monoclonal antiT6 antibody. N Engl J Med 307:685, 1982PubMedGoogle Scholar
  40. 40.
    Singh JM, Katyal SL, Bedrossian CW, Rogers RM: Pulmonary alveolar proteinosis: Staining for surfactant apoprotein in alveolar proteinosis and in conditions simulating it. Chest 83:82–86, 1983PubMedCrossRefGoogle Scholar
  41. 41.
    Haslam P, Turton C, Heard B, et al: Bronchoalveolar lavage in pulmonary fibrosis: Comparison of cells obtained with lung biopsy and clinical features. Thorax 35:9–18,1980PubMedCrossRefGoogle Scholar
  42. 42.
    Costabel U, Bross KJ, Matthys H: T-Iymphocytosis in bronchoalveolar lavage fluid of hypertensitivity pneumonitis. Chest 85:514–522, 1984PubMedCrossRefGoogle Scholar
  43. 43.
    Reynolds HY, Fulmer JD, Kazmierowski JA, Roberts WC, Frank MM, Crystal RG: Analysis of cellular and protein content of broncho-alveolar lavage fluid from patients with idiopathic pulmonary fibrosis and chronic hypersensitivity pneumonitis. J Clin Invest 59: 165–175, 1977PubMedCrossRefGoogle Scholar
  44. 44.
    Wallaert B, Hatron P-Y, Grosbois J-M, Tonnel A-B, Devulder B, Voisin C: Subclinical pulmonary involvement in collagen-vascular diseases assessed by bronchoalveolar lavage. Am Rev Respir Dis 133:574–580, 1985Google Scholar
  45. 45.
    Tate RM, Repine JE: Neutrophils and adult respiratory distress syndrome. Am Rev Respir Dis J28:552–559, 1983Google Scholar
  46. 46.
    Epidemiologic notes and reports: Kaposi’s sarcoma and pneumocystis pneumonia among homosexual men. New York City and California. MMWR 30:305–308, 1981Google Scholar
  47. 47.
    Gottlieb MS, Groopman JE, Weinstein WM, et al: The acquired immunodeficiency syndrome. Ann Intern Med 99:208–220, 1983PubMedGoogle Scholar
  48. 48.
    Wollschlager CM, Kahn FA, Chitkara RK, Shivaram U: Pulmonary manifestations of the acquired immunodeficiency syndrome (AIDS). Chest 85: 197–202, 1984PubMedCrossRefGoogle Scholar
  49. 49.
    Stover DE, Zaman MB, Hajdu SI, Lange M, Gold J, Armstrong D: Bronchoalveolar lavage in the diagnosis of diffuse pulmonary infiltrates in the immunosuppressed host. Ann Intern Med 101:1–7,1984PubMedGoogle Scholar
  50. 50.
    Young KR Jr, Rankin JA, Naegel GP, Paul E, Reynolds HY: Bronchoalveolar lavage cells and proteins in patients with the acquired immunodeficiency syndrome: An immunologic analysis. Ann Intern Med 103:522–533, 1985PubMedGoogle Scholar
  51. 51.
    Lieberman J: Elevation of serum angiotensin-converting- enzyme (ACE) level in sarcoidosis. Am J Med 59:365–372, 1975PubMedCrossRefGoogle Scholar
  52. 52.
    Lieberman J, Nosal A, Schlessner LA, Satre-Foken A: Serum angiotensin-converting enzyme for diagnosis and therapeutic evaluation of sarcoidosis. Am Rev Respir Dis 120:329–335, 1979PubMedGoogle Scholar
  53. 53.
    Baughman RP, Fernandez M, Bosken CH, Mantil J, Hurtubise P: Comparison of gallium-67 scanning. Bronchoalveolar lavage, and serum angiotensin-converting enzyme levels in pulmonary sarcoidosis. Am Rev Respir Dis 129:676–681,1984Google Scholar
  54. 54.
    Erdos EG, Skidgel RA: The angiotensin I-converting enzyme. N Engl J Med 56:345–348, 1987Google Scholar
  55. 55.
    Yotsumoto H, Imai Y, Kuzuya N, Uchimura H, Matsuzaki F: Increased levels of serum angiotensin-converting enzyme activity in hyperthyroidism. Ann Intern Med 96:326, 1982PubMedGoogle Scholar
  56. 56.
    Pascual RS, Gee JB, Finch SC: Usefulness of serum lysozyme measurement in diagnosis evaluation of sarcoidosis. N Engl J Med 289: 1074–1076, 1973PubMedCrossRefGoogle Scholar
  57. 57.
    Stokes TC, Stevens JF, Long P, et al: Preoperative carcinoembryogenic antigen and survival after resection of lung cancer. Br J Dis Chest 74:390–394, 1980PubMedCrossRefGoogle Scholar
  58. 58.
    Gold P, Freedman SO: Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121:439–462,1965PubMedCrossRefGoogle Scholar
  59. 59.
    Carney DN, Marangos PJ, Ihdde DC, et al: Serum neuron-specific enolase: A marker for disease extent and response to therapy of small-cell lung cancer. Lancet 1:583–585,1982PubMedCrossRefGoogle Scholar
  60. 60.
    Pepys J, Jenkins PA: Precipitin test in farmer’s lung. Thorax 20:21–35, 1965PubMedCrossRefGoogle Scholar
  61. 61.
    Cormier Y, Belanger J, Durand P: Factors influencing the development of serum precipitins to farmer’s lung antigen in Quebec dairy farmers. Thorax 40: 138–142, 1985PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Yves Sibille
  • William W. Merrill

There are no affiliations available

Personalised recommendations